/usr/include/llvm-3.5/llvm/IR/BasicBlock.h is in llvm-3.5-dev 1:3.5~svn201651-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | //===-- llvm/BasicBlock.h - Represent a basic block in the VM ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the BasicBlock class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_BASICBLOCK_H
#define LLVM_IR_BASICBLOCK_H
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
class LandingPadInst;
class TerminatorInst;
class LLVMContext;
class BlockAddress;
template<> struct ilist_traits<Instruction>
: public SymbolTableListTraits<Instruction, BasicBlock> {
/// \brief Return a node that marks the end of a list.
///
/// The sentinel is relative to this instance, so we use a non-static
/// method.
Instruction *createSentinel() const {
// Since i(p)lists always publicly derive from their corresponding traits,
// placing a data member in this class will augment the i(p)list. But since
// the NodeTy is expected to be publicly derive from ilist_node<NodeTy>,
// there is a legal viable downcast from it to NodeTy. We use this trick to
// superimpose an i(p)list with a "ghostly" NodeTy, which becomes the
// sentinel. Dereferencing the sentinel is forbidden (save the
// ilist_node<NodeTy>), so no one will ever notice the superposition.
return static_cast<Instruction*>(&Sentinel);
}
static void destroySentinel(Instruction*) {}
Instruction *provideInitialHead() const { return createSentinel(); }
Instruction *ensureHead(Instruction*) const { return createSentinel(); }
static void noteHead(Instruction*, Instruction*) {}
private:
mutable ilist_half_node<Instruction> Sentinel;
};
/// \brief LLVM Basic Block Representation
///
/// This represents a single basic block in LLVM. A basic block is simply a
/// container of instructions that execute sequentially. Basic blocks are Values
/// because they are referenced by instructions such as branches and switch
/// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block
/// represents a label to which a branch can jump.
///
/// A well formed basic block is formed of a list of non-terminating
/// instructions followed by a single TerminatorInst instruction.
/// TerminatorInst's may not occur in the middle of basic blocks, and must
/// terminate the blocks. The BasicBlock class allows malformed basic blocks to
/// occur because it may be useful in the intermediate stage of constructing or
/// modifying a program. However, the verifier will ensure that basic blocks
/// are "well formed".
class BasicBlock : public Value, // Basic blocks are data objects also
public ilist_node<BasicBlock> {
friend class BlockAddress;
public:
typedef iplist<Instruction> InstListType;
private:
InstListType InstList;
Function *Parent;
void setParent(Function *parent);
friend class SymbolTableListTraits<BasicBlock, Function>;
BasicBlock(const BasicBlock &) LLVM_DELETED_FUNCTION;
void operator=(const BasicBlock &) LLVM_DELETED_FUNCTION;
/// \brief Constructor.
///
/// If the function parameter is specified, the basic block is automatically
/// inserted at either the end of the function (if InsertBefore is null), or
/// before the specified basic block.
explicit BasicBlock(LLVMContext &C, const Twine &Name = "",
Function *Parent = 0, BasicBlock *InsertBefore = 0);
public:
/// \brief Get the context in which this basic block lives.
LLVMContext &getContext() const;
/// Instruction iterators...
typedef InstListType::iterator iterator;
typedef InstListType::const_iterator const_iterator;
typedef InstListType::reverse_iterator reverse_iterator;
typedef InstListType::const_reverse_iterator const_reverse_iterator;
/// \brief Creates a new BasicBlock.
///
/// If the Parent parameter is specified, the basic block is automatically
/// inserted at either the end of the function (if InsertBefore is 0), or
/// before the specified basic block.
static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "",
Function *Parent = 0,BasicBlock *InsertBefore = 0) {
return new BasicBlock(Context, Name, Parent, InsertBefore);
}
~BasicBlock();
/// \brief Return the enclosing method, or null if none.
const Function *getParent() const { return Parent; }
Function *getParent() { return Parent; }
/// \brief Returns the terminator instruction if the block is well formed or
/// null if the block is not well formed.
TerminatorInst *getTerminator();
const TerminatorInst *getTerminator() const;
/// \brief Returns a pointer to the first instruction in this block that is
/// not a PHINode instruction.
///
/// When adding instructions to the beginning of the basic block, they should
/// be added before the returned value, not before the first instruction,
/// which might be PHI. Returns 0 is there's no non-PHI instruction.
Instruction* getFirstNonPHI();
const Instruction* getFirstNonPHI() const {
return const_cast<BasicBlock*>(this)->getFirstNonPHI();
}
/// \brief Returns a pointer to the first instruction in this block that is not
/// a PHINode or a debug intrinsic.
Instruction* getFirstNonPHIOrDbg();
const Instruction* getFirstNonPHIOrDbg() const {
return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbg();
}
/// \brief Returns a pointer to the first instruction in this block that is not
/// a PHINode, a debug intrinsic, or a lifetime intrinsic.
Instruction* getFirstNonPHIOrDbgOrLifetime();
const Instruction* getFirstNonPHIOrDbgOrLifetime() const {
return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbgOrLifetime();
}
/// \brief Returns an iterator to the first instruction in this block that is
/// suitable for inserting a non-PHI instruction.
///
/// In particular, it skips all PHIs and LandingPad instructions.
iterator getFirstInsertionPt();
const_iterator getFirstInsertionPt() const {
return const_cast<BasicBlock*>(this)->getFirstInsertionPt();
}
/// \brief Unlink 'this' from the containing function, but do not delete it.
void removeFromParent();
/// \brief Unlink 'this' from the containing function and delete it.
void eraseFromParent();
/// \brief Unlink this basic block from its current function and insert it
/// into the function that \p MovePos lives in, right before \p MovePos.
void moveBefore(BasicBlock *MovePos);
/// \brief Unlink this basic block from its current function and insert it
/// right after \p MovePos in the function \p MovePos lives in.
void moveAfter(BasicBlock *MovePos);
/// \brief Return this block if it has a single predecessor block. Otherwise
/// return a null pointer.
BasicBlock *getSinglePredecessor();
const BasicBlock *getSinglePredecessor() const {
return const_cast<BasicBlock*>(this)->getSinglePredecessor();
}
/// \brief Return this block if it has a unique predecessor block. Otherwise return a null pointer.
///
/// Note that unique predecessor doesn't mean single edge, there can be
/// multiple edges from the unique predecessor to this block (for example a
/// switch statement with multiple cases having the same destination).
BasicBlock *getUniquePredecessor();
const BasicBlock *getUniquePredecessor() const {
return const_cast<BasicBlock*>(this)->getUniquePredecessor();
}
//===--------------------------------------------------------------------===//
/// Instruction iterator methods
///
inline iterator begin() { return InstList.begin(); }
inline const_iterator begin() const { return InstList.begin(); }
inline iterator end () { return InstList.end(); }
inline const_iterator end () const { return InstList.end(); }
inline reverse_iterator rbegin() { return InstList.rbegin(); }
inline const_reverse_iterator rbegin() const { return InstList.rbegin(); }
inline reverse_iterator rend () { return InstList.rend(); }
inline const_reverse_iterator rend () const { return InstList.rend(); }
inline size_t size() const { return InstList.size(); }
inline bool empty() const { return InstList.empty(); }
inline const Instruction &front() const { return InstList.front(); }
inline Instruction &front() { return InstList.front(); }
inline const Instruction &back() const { return InstList.back(); }
inline Instruction &back() { return InstList.back(); }
/// \brief Return the underlying instruction list container.
///
/// Currently you need to access the underlying instruction list container
/// directly if you want to modify it.
const InstListType &getInstList() const { return InstList; }
InstListType &getInstList() { return InstList; }
/// \brief Returns a pointer to a member of the instruction list.
static iplist<Instruction> BasicBlock::*getSublistAccess(Instruction*) {
return &BasicBlock::InstList;
}
/// \brief Returns a pointer to the symbol table if one exists.
ValueSymbolTable *getValueSymbolTable();
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const Value *V) {
return V->getValueID() == Value::BasicBlockVal;
}
/// \brief Cause all subinstructions to "let go" of all the references that
/// said subinstructions are maintaining.
///
/// This allows one to 'delete' a whole class at a time, even though there may
/// be circular references... first all references are dropped, and all use
/// counts go to zero. Then everything is delete'd for real. Note that no
/// operations are valid on an object that has "dropped all references",
/// except operator delete.
void dropAllReferences();
/// \brief Notify the BasicBlock that the predecessor \p Pred is no longer
/// able to reach it.
///
/// This is actually not used to update the Predecessor list, but is actually
/// used to update the PHI nodes that reside in the block. Note that this
/// should be called while the predecessor still refers to this block.
void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs = false);
/// \brief Split the basic block into two basic blocks at the specified
/// instruction.
///
/// Note that all instructions BEFORE the specified iterator stay as part of
/// the original basic block, an unconditional branch is added to the original
/// BB, and the rest of the instructions in the BB are moved to the new BB,
/// including the old terminator. The newly formed BasicBlock is returned.
/// This function invalidates the specified iterator.
///
/// Note that this only works on well formed basic blocks (must have a
/// terminator), and 'I' must not be the end of instruction list (which would
/// cause a degenerate basic block to be formed, having a terminator inside of
/// the basic block).
///
/// Also note that this doesn't preserve any passes. To split blocks while
/// keeping loop information consistent, use the SplitBlock utility function.
BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = "");
/// \brief Returns true if there are any uses of this basic block other than
/// direct branches, switches, etc. to it.
bool hasAddressTaken() const { return getSubclassDataFromValue() != 0; }
/// \brief Update all phi nodes in this basic block's successors to refer to
/// basic block \p New instead of to it.
void replaceSuccessorsPhiUsesWith(BasicBlock *New);
/// \brief Return true if this basic block is a landing pad.
///
/// Being a ``landing pad'' means that the basic block is the destination of
/// the 'unwind' edge of an invoke instruction.
bool isLandingPad() const;
/// \brief Return the landingpad instruction associated with the landing pad.
LandingPadInst *getLandingPadInst();
const LandingPadInst *getLandingPadInst() const;
private:
/// \brief Increment the internal refcount of the number of BlockAddresses
/// referencing this BasicBlock by \p Amt.
///
/// This is almost always 0, sometimes one possibly, but almost never 2, and
/// inconceivably 3 or more.
void AdjustBlockAddressRefCount(int Amt) {
setValueSubclassData(getSubclassDataFromValue()+Amt);
assert((int)(signed char)getSubclassDataFromValue() >= 0 &&
"Refcount wrap-around");
}
/// \brief Shadow Value::setValueSubclassData with a private forwarding method
/// so that any future subclasses cannot accidentally use it.
void setValueSubclassData(unsigned short D) {
Value::setValueSubclassData(D);
}
};
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(BasicBlock, LLVMBasicBlockRef)
} // End llvm namespace
#endif
|