/usr/include/llvm-3.5/llvm/CodeGen/FastISel.h is in llvm-3.5-dev 1:3.5~svn201651-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | //===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the FastISel class.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_FASTISEL_H
#define LLVM_CODEGEN_FASTISEL_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/ValueTypes.h"
namespace llvm {
class AllocaInst;
class Constant;
class ConstantFP;
class FunctionLoweringInfo;
class Instruction;
class LoadInst;
class MachineConstantPool;
class MachineFunction;
class MachineInstr;
class MachineFrameInfo;
class MachineRegisterInfo;
class DataLayout;
class TargetInstrInfo;
class TargetLibraryInfo;
class TargetLowering;
class TargetMachine;
class TargetRegisterClass;
class TargetRegisterInfo;
class User;
class Value;
/// This is a fast-path instruction selection class that generates poor code and
/// doesn't support illegal types or non-trivial lowering, but runs quickly.
class FastISel {
protected:
DenseMap<const Value *, unsigned> LocalValueMap;
FunctionLoweringInfo &FuncInfo;
MachineRegisterInfo &MRI;
MachineFrameInfo &MFI;
MachineConstantPool &MCP;
DebugLoc DbgLoc;
const TargetMachine &TM;
const DataLayout &DL;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
const TargetRegisterInfo &TRI;
const TargetLibraryInfo *LibInfo;
/// The position of the last instruction for materializing constants for use
/// in the current block. It resets to EmitStartPt when it makes sense (for
/// example, it's usually profitable to avoid function calls between the
/// definition and the use)
MachineInstr *LastLocalValue;
/// The top most instruction in the current block that is allowed for emitting
/// local variables. LastLocalValue resets to EmitStartPt when it makes sense
/// (for example, on function calls)
MachineInstr *EmitStartPt;
public:
/// Return the position of the last instruction emitted for materializing
/// constants for use in the current block.
MachineInstr *getLastLocalValue() { return LastLocalValue; }
/// Update the position of the last instruction emitted for materializing
/// constants for use in the current block.
void setLastLocalValue(MachineInstr *I) {
EmitStartPt = I;
LastLocalValue = I;
}
/// Set the current block to which generated machine instructions will be
/// appended, and clear the local CSE map.
void startNewBlock();
/// Return current debug location information.
DebugLoc getCurDebugLoc() const { return DbgLoc; }
/// Do "fast" instruction selection for function arguments and append machine
/// instructions to the current block. Return true if it is successful.
bool LowerArguments();
/// Do "fast" instruction selection for the given LLVM IR instruction, and
/// append generated machine instructions to the current block. Return true if
/// selection was successful.
bool SelectInstruction(const Instruction *I);
/// Do "fast" instruction selection for the given LLVM IR operator
/// (Instruction or ConstantExpr), and append generated machine instructions
/// to the current block. Return true if selection was successful.
bool SelectOperator(const User *I, unsigned Opcode);
/// Create a virtual register and arrange for it to be assigned the value for
/// the given LLVM value.
unsigned getRegForValue(const Value *V);
/// Look up the value to see if its value is already cached in a register. It
/// may be defined by instructions across blocks or defined locally.
unsigned lookUpRegForValue(const Value *V);
/// This is a wrapper around getRegForValue that also takes care of truncating
/// or sign-extending the given getelementptr index value.
std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
/// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
/// that we could have a sequence where multiple LLVM IR instructions are
/// folded into the same machineinstr. For example we could have:
///
/// A: x = load i32 *P
/// B: y = icmp A, 42
/// C: br y, ...
///
/// In this scenario, \p LI is "A", and \p FoldInst is "C". We know about "B"
/// (and any other folded instructions) because it is between A and C.
///
/// If we succeed folding, return true.
bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
/// \brief The specified machine instr operand is a vreg, and that vreg is
/// being provided by the specified load instruction. If possible, try to
/// fold the load as an operand to the instruction, returning true if
/// possible.
///
/// This method should be implemented by targets.
virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
const LoadInst * /*LI*/) {
return false;
}
/// Reset InsertPt to prepare for inserting instructions into the current
/// block.
void recomputeInsertPt();
/// Remove all dead instructions between the I and E.
void removeDeadCode(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E);
struct SavePoint {
MachineBasicBlock::iterator InsertPt;
DebugLoc DL;
};
/// Prepare InsertPt to begin inserting instructions into the local value area
/// and return the old insert position.
SavePoint enterLocalValueArea();
/// Reset InsertPt to the given old insert position.
void leaveLocalValueArea(SavePoint Old);
virtual ~FastISel();
protected:
explicit FastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);
/// This method is called by target-independent code when the normal FastISel
/// process fails to select an instruction. This gives targets a chance to
/// emit code for anything that doesn't fit into FastISel's framework. It
/// returns true if it was successful.
virtual bool
TargetSelectInstruction(const Instruction *I) = 0;
/// This method is called by target-independent code to do target specific
/// argument lowering. It returns true if it was successful.
virtual bool FastLowerArguments();
/// This method is called by target-independent code to request that an
/// instruction with the given type and opcode be emitted.
virtual unsigned FastEmit_(MVT VT,
MVT RetVT,
unsigned Opcode);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register operand be emitted.
virtual unsigned FastEmit_r(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register operands be emitted.
virtual unsigned FastEmit_rr(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register and immediate
/// operands be emitted.
virtual unsigned FastEmit_ri(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
uint64_t Imm);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register and floating-point
/// immediate operands be emitted.
virtual unsigned FastEmit_rf(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register and immediate
/// operands be emitted.
virtual unsigned FastEmit_rri(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm);
/// \brief This method is a wrapper of FastEmit_ri.
///
/// It first tries to emit an instruction with an immediate operand using
/// FastEmit_ri. If that fails, it materializes the immediate into a register
/// and try FastEmit_rr instead.
unsigned FastEmit_ri_(MVT VT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
uint64_t Imm, MVT ImmType);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and immediate operand be emitted.
virtual unsigned FastEmit_i(MVT VT,
MVT RetVT,
unsigned Opcode,
uint64_t Imm);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and floating-point immediate
/// operand be emitted.
virtual unsigned FastEmit_f(MVT VT,
MVT RetVT,
unsigned Opcode,
const ConstantFP *FPImm);
/// Emit a MachineInstr with no operands and a result register in the given
/// register class.
unsigned FastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass *RC);
/// Emit a MachineInstr with one register operand and a result register in the
/// given register class.
unsigned FastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill);
/// Emit a MachineInstr with two register operands and a result register in
/// the given register class.
unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
/// Emit a MachineInstr with three register operands and a result register in
/// the given register class.
unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
unsigned Op2, bool Op2IsKill);
/// Emit a MachineInstr with a register operand, an immediate, and a result
/// register in the given register class.
unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm);
/// Emit a MachineInstr with one register operand and two immediate operands.
unsigned FastEmitInst_rii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm1, uint64_t Imm2);
/// Emit a MachineInstr with two register operands and a result register in
/// the given register class.
unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm);
/// Emit a MachineInstr with two register operands, an immediate, and a result
/// register in the given register class.
unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm);
/// Emit a MachineInstr with two register operands, two immediates operands,
/// and a result register in the given register class.
unsigned FastEmitInst_rrii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm1, uint64_t Imm2);
/// Emit a MachineInstr with a single immediate operand, and a result register
/// in the given register class.
unsigned FastEmitInst_i(unsigned MachineInstrOpcode,
const TargetRegisterClass *RC,
uint64_t Imm);
/// Emit a MachineInstr with a two immediate operands.
unsigned FastEmitInst_ii(unsigned MachineInstrOpcode,
const TargetRegisterClass *RC,
uint64_t Imm1, uint64_t Imm2);
/// Emit a MachineInstr for an extract_subreg from a specified index of a
/// superregister to a specified type.
unsigned FastEmitInst_extractsubreg(MVT RetVT,
unsigned Op0, bool Op0IsKill,
uint32_t Idx);
/// Emit MachineInstrs to compute the value of Op with all but the least
/// significant bit set to zero.
unsigned FastEmitZExtFromI1(MVT VT,
unsigned Op0, bool Op0IsKill);
/// Emit an unconditional branch to the given block, unless it is the
/// immediate (fall-through) successor, and update the CFG.
void FastEmitBranch(MachineBasicBlock *MBB, DebugLoc DL);
void UpdateValueMap(const Value* I, unsigned Reg, unsigned NumRegs = 1);
unsigned createResultReg(const TargetRegisterClass *RC);
/// Emit a constant in a register using target-specific logic, such as
/// constant pool loads.
virtual unsigned TargetMaterializeConstant(const Constant* C) {
return 0;
}
/// Emit an alloca address in a register using target-specific logic.
virtual unsigned TargetMaterializeAlloca(const AllocaInst* C) {
return 0;
}
virtual unsigned TargetMaterializeFloatZero(const ConstantFP* CF) {
return 0;
}
/// \brief Check if \c Add is an add that can be safely folded into \c GEP.
///
/// \c Add can be folded into \c GEP if:
/// - \c Add is an add,
/// - \c Add's size matches \c GEP's,
/// - \c Add is in the same basic block as \c GEP, and
/// - \c Add has a constant operand.
bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
private:
bool SelectBinaryOp(const User *I, unsigned ISDOpcode);
bool SelectFNeg(const User *I);
bool SelectGetElementPtr(const User *I);
bool SelectCall(const User *I);
bool SelectBitCast(const User *I);
bool SelectCast(const User *I, unsigned Opcode);
bool SelectExtractValue(const User *I);
bool SelectInsertValue(const User *I);
/// \brief Handle PHI nodes in successor blocks.
///
/// Emit code to ensure constants are copied into registers when needed.
/// Remember the virtual registers that need to be added to the Machine PHI
/// nodes as input. We cannot just directly add them, because expansion might
/// result in multiple MBB's for one BB. As such, the start of the BB might
/// correspond to a different MBB than the end.
bool HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
/// Helper for getRegForVale. This function is called when the value isn't
/// already available in a register and must be materialized with new
/// instructions.
unsigned materializeRegForValue(const Value *V, MVT VT);
/// Clears LocalValueMap and moves the area for the new local variables to the
/// beginning of the block. It helps to avoid spilling cached variables across
/// heavy instructions like calls.
void flushLocalValueMap();
/// Test whether the given value has exactly one use.
bool hasTrivialKill(const Value *V) const;
};
}
#endif
|