/usr/include/visp/vpRobotWireFrameSimulator.h is in libvisp-dev 2.8.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | /****************************************************************************
*
* $Id: vpRobotWireFrameSimulator.h 3530 2012-01-03 10:52:12Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Basic class used to make robot simulators.
*
* Authors:
* Nicolas Melchior
*
*****************************************************************************/
#ifndef vpRobotWireFrameSimulator_HH
#define vpRobotWireFrameSimulator_HH
/*!
\file vpRobotWireFrameSimulator.h
\brief Basic class used to make robot simulators.
*/
#include <visp/vpConfig.h>
#if defined(WIN32) || defined(VISP_HAVE_PTHREAD)
#include <cmath> // std::fabs
#include <limits> // numeric_limits
#if defined(WIN32)
# include <windows.h>
#elif defined(VISP_HAVE_PTHREAD)
# include <pthread.h>
#endif
#include <visp/vpWireFrameSimulator.h>
#include <visp/vpRobot.h>
#include <visp/vpRobotSimulator.h>
#include <visp/vpDisplayOpenCV.h>
#include <visp/vpDisplayX.h>
#include <visp/vpDisplayGTK.h>
#include <visp/vpDisplayGDI.h>
#include <visp/vpDisplayD3D.h>
/*!
\class vpRobotWireFrameSimulator
\ingroup RobotSimuWithVisu
\brief This class aims to be a basis used to create all the
simulators of robots.
Thus in this class you will find all the parameters and methods
which are necessary to create a simulator. Several methods are pure
virtual. In this case it means that they are specific to the each
robot, for example the computation of the geometrical model.
\warning This class uses threading capabilities. Thus on Unix-like
platforms, the libpthread third-party library need to be
installed. On Windows, we use the native threading capabilities.
*/
class VISP_EXPORT vpRobotWireFrameSimulator : protected vpWireFrameSimulator, public vpRobotSimulator
{
public:
vpImage<vpRGBa> I;
typedef enum
{
MODEL_3D,
MODEL_DH
} vpDisplayRobotType;
protected:
/*! cpu time at the begining of the robot's movement*/
double tcur;
/*! cpu time at the end of the last robot's movement*/
double tprev;
/*! Contains the 3D model of the robot's arms*/
Bound_scene* robotArms;
/*! Size of the fMi table*/
unsigned int size_fMi;
/*! Table containing all the homogeneous matrices between the reference frame of the robot and the frames you used to compute the Denavit-Hartenberg representation
If you use a camera at the end of the effector, the last homogeneous matrix has to be the one between the reference frame and the camera frame (fMc)*/
vpHomogeneousMatrix* fMi;
/*! The articular coordinates*/
vpColVector artCoord;
/*! The articular velocity*/
vpColVector artVel;
/*! The velocity in the current frame (articular, camera or reference)*/
vpColVector velocity;
#if defined(WIN32)
HANDLE hThread;
HANDLE mutex_fMi;
HANDLE mutex_artVel;
HANDLE mutex_artCoord;
HANDLE mutex_velocity;
HANDLE mutex_display;
#elif defined(VISP_HAVE_PTHREAD)
pthread_t thread;
pthread_attr_t attr;
pthread_mutex_t mutex_fMi;
pthread_mutex_t mutex_artVel;
pthread_mutex_t mutex_artCoord;
pthread_mutex_t mutex_velocity;
pthread_mutex_t mutex_display;
#endif
bool displayBusy;
/*! True if the robot has to be stopped*/
bool robotStop;
/*! True if one of the joint reach the limit*/
bool jointLimit;
/*! Index of the joint which is in limit*/
unsigned int jointLimitArt;
/*! True if the singularity are automatically managed */
bool singularityManagement;
/*! External camera parameters*/
vpCameraParameters cameraParam;
#if defined VISP_HAVE_X11
vpDisplayX display;
#elif defined VISP_HAVE_GDI
vpDisplayGDI display;
#elif defined VISP_HAVE_OPENCV
vpDisplayOpenCV display;
#elif defined VISP_HAVE_D3D9
vpDisplayD3D display;
#elif defined VISP_HAVE_GTK
vpDisplayGTK display;
#endif
vpDisplayRobotType displayType;
bool displayAllowed;
//! Flag used to force the sampling time in the thread computing the robot's displacement to a constant value (\e samplingTime). It may be useful if the main thread (computing the features) is very time consumming. False by default.
bool constantSamplingTimeMode;
//! Flag used to specify to the thread managing the robot displacements that the setVelocity() method has been called.
bool setVelocityCalled;
bool verbose_;
public:
vpRobotWireFrameSimulator();
vpRobotWireFrameSimulator(bool display);
virtual ~vpRobotWireFrameSimulator();
/*!
Get the parameters of the virtual external camera.
\return It returns the camera parameters.
*/
vpCameraParameters getExternalCameraParameters() const {
//if(px_ext != 1 && py_ext != 1)
// we assume px_ext and py_ext > 0
if( (std::fabs(px_ext-1.) > vpMath::maximum(px_ext,1.)*std::numeric_limits<double>::epsilon())
&& (std::fabs(py_ext-1) > vpMath::maximum(py_ext,1.)*std::numeric_limits<double>::epsilon()))
return vpCameraParameters(px_ext,py_ext,I.getWidth()/2,I.getHeight()/2);
else
{
unsigned int size = vpMath::minimum(I.getWidth(),I.getHeight())/2;
return vpCameraParameters(size,size,I.getWidth()/2,I.getHeight()/2);
}
}
/*!
Get the external camera's position relative to the the world reference frame.
\return the main external camera position relative to the the world reference frame.
*/
vpHomogeneousMatrix getExternalCameraPosition() const
{
return this->vpWireFrameSimulator::getExternalCameraPosition();
}
void getInternalView(vpImage<vpRGBa> &I);
void getInternalView(vpImage<unsigned char> &I);
vpHomogeneousMatrix get_cMo();
/*!
Get the pose between the object and the fixed world frame.
\return The pose between the object and the fixed world frame.
*/
vpHomogeneousMatrix get_fMo() const {return fMo;}
/* Display functions */
void initScene(const vpSceneObject &obj, const vpSceneDesiredObject &desiredObject);
void initScene(const char* obj, const char* desiredObject);
void initScene (const vpSceneObject &obj);
void initScene(const char* obj);
/*!
Set the color used to display the camera in the external view.
\param col : The desired color.
*/
void setCameraColor(const vpColor col) {camColor = col;}
/*!
Set the flag used to force the sampling time in the thread computing the
robot's displacement to a constant value; see setSamplingTime(). It may be
useful if the main thread (computing the features) is very time consuming.
False by default.
\param _constantSamplingTimeMode : The new value of the constantSamplingTimeMode flag.
*/
inline void setConstantSamplingTimeMode(const bool _constantSamplingTimeMode){
constantSamplingTimeMode = _constantSamplingTimeMode;
}
/*!
Set the color used to display the object at the current position in the robot's camera view.
\param col : The desired color.
*/
void setCurrentViewColor(const vpColor col) {curColor = col;}
/*!
Set the color used to display the object at the desired position in the robot's camera view.
\param col : The desired color.
*/
void setDesiredViewColor(const vpColor col) {desColor = col;}
/*!
Set the desired position of the robot's camera relative to the object.
\param cdMo : The desired pose of the camera.
*/
void setDesiredCameraPosition(const vpHomogeneousMatrix cdMo)
{
this->vpWireFrameSimulator::setDesiredCameraPosition(cdMo);
}
/*!
Set the way to draw the robot. Depending on what you choose you can display a 3D wireframe model or a set of lines linking the frames used to compute the geometrical model.
\param dispType : Type of display. Can be MODEL_3D or MODEL_DH.
*/
inline void setDisplayRobotType (const vpDisplayRobotType dispType) {displayType = dispType;}
/*!
Set the external camera point of view.
\param camMf : The pose of the external camera relative to the world reference frame.
*/
void setExternalCameraPosition(const vpHomogeneousMatrix camMf)
{
this->vpWireFrameSimulator::setExternalCameraPosition(camMf);
}
/*!
Specify the thickness of the graphics drawings.
*/
void setGraphicsThickness(unsigned int thickness)
{
this->thickness_ = thickness;
}
/*!
Set the sampling time.
\param delta_t : Sampling time in second used to compute the robot displacement from
the velocity applied to the robot during this time.
Since the wireframe simulator is threaded, the sampling time is set to vpTime::minTimeForUsleepCall / 1000 seconds.
*/
inline void setSamplingTime(const double &delta_t)
{
if(delta_t < static_cast<float>(vpTime::minTimeForUsleepCall * 1e-3)){
this->delta_t_ = static_cast<float>(vpTime::minTimeForUsleepCall * 1e-3);
} else {
this->delta_t_ = delta_t;
}
}
/*! Set the parameter which enable or disable the singularity mangement */
void setSingularityManagement (const bool sm) {singularityManagement = sm;}
/*!
Activates extra printings when the robot reaches joint limits...
*/
void setVerbose(bool verbose)
{
this->verbose_ = verbose;
}
/*!
Set the pose between the object and the fixed world frame.
\param fMo : The pose between the object and the fixed world frame.
*/
void set_fMo(const vpHomogeneousMatrix &fMo) {this->fMo = fMo;}
protected:
/*!
Function used to launch the thread which moves the robot.
*/
#if defined(WIN32)
static DWORD WINAPI launcher( LPVOID lpParam )
{
((vpRobotWireFrameSimulator *)lpParam)->updateArticularPosition();
return 0;
}
#elif defined(VISP_HAVE_PTHREAD)
static void* launcher(void *arg)
{
(reinterpret_cast<vpRobotWireFrameSimulator *>(arg))->updateArticularPosition();
// pthread_exit((void*) 0);
return NULL;
}
#endif
/* Robot functions */
void init() {;}
/*! Method lauched by the thread to compute the position of the robot in the articular frame. */
virtual void updateArticularPosition() = 0;
/*! Method used to check if the robot reached a joint limit. */
virtual int isInJointLimit () = 0;
/*! Compute the articular velocity relative to the velocity in another frame. */
virtual void computeArticularVelocity() = 0;
/* Display functions */
void initDisplay() {;}
virtual void initArms() = 0;
#if defined(WIN32)
vpColVector get_artCoord() const {
WaitForSingleObject(mutex_artCoord,INFINITE);
vpColVector artCoordTmp (6);
artCoordTmp = artCoord;
ReleaseMutex(mutex_artCoord);
return artCoordTmp;}
void set_artCoord(const vpColVector &coord) {
WaitForSingleObject(mutex_artCoord,INFINITE);
artCoord = coord;
ReleaseMutex(mutex_artCoord);}
vpColVector get_artVel() const {
WaitForSingleObject(mutex_artVel,INFINITE);
vpColVector artVelTmp (artVel);
ReleaseMutex(mutex_artVel);
return artVelTmp;}
void set_artVel(const vpColVector &vel) {
WaitForSingleObject(mutex_artVel,INFINITE);
artVel = vel;
ReleaseMutex(mutex_artVel);}
vpColVector get_velocity() {
WaitForSingleObject(mutex_velocity,INFINITE);
vpColVector velocityTmp = velocity;
ReleaseMutex(mutex_velocity);
return velocityTmp;}
void set_velocity(const vpColVector &vel) {
WaitForSingleObject(mutex_velocity,INFINITE);
velocity = vel;
ReleaseMutex(mutex_velocity);}
void set_displayBusy (const bool &status) {
WaitForSingleObject(mutex_display,INFINITE);
displayBusy = status;
ReleaseMutex(mutex_display);}
bool get_displayBusy () {
WaitForSingleObject(mutex_display,INFINITE);
bool status = displayBusy;
if (!displayBusy) displayBusy = true;
ReleaseMutex(mutex_display);
return status;}
#elif defined(VISP_HAVE_PTHREAD)
vpColVector get_artCoord() {
pthread_mutex_lock (&mutex_artCoord);
vpColVector artCoordTmp (6);
artCoordTmp = artCoord;
pthread_mutex_unlock (&mutex_artCoord);
return artCoordTmp;}
void set_artCoord(const vpColVector &coord) {
pthread_mutex_lock (&mutex_artCoord);
artCoord = coord;
pthread_mutex_unlock (&mutex_artCoord);}
vpColVector get_artVel() {
pthread_mutex_lock (&mutex_artVel);
vpColVector artVelTmp (artVel);
pthread_mutex_unlock (&mutex_artVel);
return artVelTmp;}
void set_artVel(const vpColVector &vel) {
pthread_mutex_lock (&mutex_artVel);
artVel = vel;
pthread_mutex_unlock (&mutex_artVel);}
vpColVector get_velocity() {
pthread_mutex_lock (&mutex_velocity);
vpColVector velocityTmp = velocity;
pthread_mutex_unlock (&mutex_velocity);
return velocityTmp;}
void set_velocity(const vpColVector &vel) {
pthread_mutex_lock (&mutex_velocity);
velocity = vel;
pthread_mutex_unlock (&mutex_velocity);}
void set_displayBusy (const bool &status) {
pthread_mutex_lock (&mutex_display);
displayBusy = status;
pthread_mutex_unlock (&mutex_display);}
bool get_displayBusy () {
pthread_mutex_lock (&mutex_display);
bool status = displayBusy;
if (!displayBusy) displayBusy = true;
pthread_mutex_unlock (&mutex_display);
return status;}
#endif
/*! Get a table of poses between the reference frame and the frames you used to compute the Denavit-Hartenberg representation */
virtual void get_fMi(vpHomogeneousMatrix *fMit) = 0;
};
#endif
#endif
|