/usr/include/visp/vpMeEllipse.h is in libvisp-dev 2.8.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | /****************************************************************************
*
* $Id: vpMeEllipse.h 4231 2013-04-29 16:26:28Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Moving edges.
*
* Authors:
* Eric Marchand
*
*****************************************************************************/
/*!
\file vpMeEllipse.h
\brief Moving edges on an ellipse
*/
#ifndef vpMeEllipse_HH
#define vpMeEllipse_HH
#include <visp/vpMatrix.h>
#include <visp/vpColVector.h>
#include <visp/vpMeTracker.h>
#include <visp/vpMeSite.h>
#include <visp/vpImagePoint.h>
#include <visp/vpImage.h>
#include <visp/vpColor.h>
#include <math.h>
#include <list>
/*!
\class vpMeEllipse
\ingroup TrackingImageME
\brief Class that tracks an ellipse moving edges.
In this class, an ellipse is defined as the set of points \f$ (i,j) \f$ of the image frame (For more information about the image frame see the vpImagePoint documentation) that satisfy the implicit equation :
\f[ i^2 + K_0j^2 + 2K_1ij + 2K_2i + 2K_3j + K4 = 0 \f]
If \f$ K_0 \f$ is equal to 1 and \f$ K_1 \f$ is equal to 0 the the set of points \f$ (i,j) \f$ represents a circle.
The five parameters are stored in the public attribute K.
An ellipse is also defined thanks to three other parameter which are \f$ a \f$, \f$ b \f$ and \f$ e \f$. \f$ a \f$ represents the semiminor axis and \f$ b \f$ is the semimajor axis. Here \f$ e \f$ is the angle made by the
major axis and the i axis of the image frame \f$ (i,j) \f$. The following figure shows better meaning of those parameters.
\image html vpMeEllipse.gif
\image latex vpMeEllipse.ps width=10cm
It is possible to compute the coordinates \f$ (i,j) \f$ of a point which belongs to the ellipse thanks to the following equations :
\f[ i = i_c + b cos(e) cos(\alpha) - a sin(e) sin(\alpha) \f]
\f[ j = j_c + b sin(e) cos(\alpha) + a cos(e) sin(\alpha) \f]
Here the coordinates \f$ (i_c,j_c) \f$ are the coordinates of the ellipse center in the image frame and \f$ \alpha \f$ is an angle beetween \f$ [0,2\pi] \f$ and which enables to describe all the points of the ellipse.
\image html vpMeEllipse2.gif
\image latex vpMeEllipse2.ps width=10cm
The example below available in tutorial-me-ellipse-tracker.cpp and described
in \ref tutorial-tracking-me, section \ref tracking_me_ellipse shows how to use this class.
\include tutorial-me-ellipse-tracker.cpp
*/
/*
The code below shows how to use this class.
\code
#include <visp/vpConfig.h>
#include <visp/vpImage.h>
#include <visp/vpMeEllipse.h>
#include <visp/vpImagePoint.h>
int main()
{
vpImage<unsigned char> I;
// I is the image containing the ellipse to track
// Set the moving-edges tracker parameters
vpMe me;
me.setRange(25);
me.setPointsToTrack(20);
me.setThreshold(15000);
me.setSampleStep(10);
// Initialize the moving-edges ellipse tracker parameters
vpMeEllipse ellipse;
ellipse.setMe(&me);
// Initialize the tracking. You have to click on five different points belonging to the ellipse.
ellipse.initTracking(I);
while ( 1 )
{
// ... Here the code to read or grab the next image.
// Track the ellipse.
ellipse.track(I);
}
return 0;
}
\endcode
\note It is possible to display the ellipse as an overlay. For that you
must use the display function of the class vpMeEllipse.
*/
class VISP_EXPORT vpMeEllipse : public vpMeTracker
{
public:
vpMeEllipse() ;
vpMeEllipse(const vpMeEllipse &meellipse) ;
virtual ~vpMeEllipse() ;
void track(const vpImage<unsigned char>& Im);
void initTracking(const vpImage<unsigned char> &I) ;
void initTracking(const vpImage<unsigned char> &I, const unsigned int n,
vpImagePoint* iP) ;
void display(const vpImage<unsigned char>&I, vpColor col) ;
void printParameters() ;
#ifdef VISP_BUILD_DEPRECATED_FUNCTIONS
/*!
@name Deprecated functions
*/
//@{
void initTracking(const vpImage<unsigned char> &I, const unsigned int n,
unsigned *i, unsigned *j) ;
//@}
#endif //VISP_BUILD_DEPRECATED_FUNCTIONS
/*!
Set to true if you are sure to track a circle.
\warning During all the tracking, the shape must be approximatively a circle and not an ellipse with a strong difference between the majoraxis and the minoraxis.
In that case, the set of points \f$ (i,j) \f$ satisfy the implicit equation :
\f[ i^2 + j^2 + 2K_2i + 2K_3j + K4 = 0 \f]
Compared to the classical equation of an ellipse, \f$ K_0 \f$ is equal to 1 and \f$ K_1 \f$ is equal to 0.
\param circle : Set to true if you want to track a circle.
*/
void setCircle(bool circle) { this->circle = circle ; }
/*!
Gets the 0 order moment \f$ m_{00} \f$ which represents the area of the ellipse.
\return the value of \f$ m_{00} \f$.
*/
inline double get_m00() const {return m00;}
/*!
Gets the 1 order raw moment \f$ m_{10} \f$ with \f$ m_{nm} = \sum_{i,j}i^n j^m \f$.
\return the value of \f$ m_{10} \f$.
*/
inline double get_m10() const {return m10;}
/*!
Gets the 1 order raw moment \f$ m_{01} \f$ with \f$ m_{nm} = \sum_{i,j}i^n j^m \f$.
\return the value of \f$ m_{01} \f$.
*/
inline double get_m01() const {return m01;}
/*!
Gets the 2 order raw moment \f$ m_{11} \f$ with \f$ m_{nm} = \sum_{i,j}i^n j^m \f$.
\return the value of \f$ m_{11} \f$.
*/
inline double get_m11() const {return m11;}
/*!
Gets the 2 order raw moment \f$ m_{20} \f$ with \f$ m_{nm} = \sum_{i,j}i^n j^m \f$.
\return the value of \f$ m_{11} \f$.
*/
inline double get_m20() const {return m20;}
/*!
Gets the 2 order raw moment \f$ m_{02} \f$ with \f$ m_{nm} = \sum_{i,j}i^n j^m \f$.
\return the value of \f$ m_{11} \f$.
*/
inline double get_m02() const {return m02;}
/*!
Gets the 2 order central moment \f$ \mu_{11} \f$.
\return the value of \f$ \mu_{11} \f$.
*/
inline double get_mu11() const {return mu11;}
/*!
Gets the 2 order central moment \f$ \mu_{02} \f$.
\return the value of \f$ \mu_{02} \f$.
*/
inline double get_mu02() const {return mu02;}
/*!
Gets the 2 order central moment \f$ \mu_{20} \f$.
\return the value of \f$ \mu_{20} \f$.
*/
inline double get_mu20() const {return mu20;}
/*!
Gets the center of the ellipse.
*/
inline vpImagePoint getCenter() const {return iPc; }
/*!
Gets the semiminor axis of the ellipse.
*/
inline double getA() const {return a; }
/*!
Gets the semimajor axis of the ellipse.
*/
inline double getB() const {return b; }
/*!
Gets the angle made by the major axis and the i axis of the image frame \f$ (i,j) \f$
*/
inline double getE() const {return e; }
/*!
Gets the equation parameters of the ellipse
*/
void getEquationParam(double &A, double &B, double &E) { A = a; B = b; E = e; }
/*!
Gets the smallest \f$ alpha \f$ angle
*/
inline double getSmallestAngle() { return alpha1; }
/*!
Gets the highest \f$ alpha \f$ angle
*/
inline double getHighestAngle() { return alpha2; }
/*!
Set the new threshold for the robust estimation of the parameters of the
ellipse equation.
If the weight of a point is below this threshold, this one is removed from
the list of tracked meSite.
Value must be between 0 (never rejected) and 1 (always rejected).
\param threshold : The new value of the threshold.
*/
void setThresholdRobust(const double threshold){
if(threshold<0){
thresholdWeight = 0;
}else if(threshold>1){
thresholdWeight = 1;
}else{
thresholdWeight = threshold;
}
}
#ifdef VISP_BUILD_DEPRECATED_FUNCTIONS
public:
#else
protected:
#endif
/*! Parameters of the ellipse to define the set of points that satisfy the implicit equation :
\f[ i^2 + K_0j^2 + 2K_1ij + 2K_2i + 2K_3j + K4 = 0 \f]
*/
vpColVector K ;
//! The coordinates of the ellipse center.
vpImagePoint iPc;
//! \f$ a \f$ is the semiminor axis of the ellipse.
double a;
//! \f$ b \f$ is the semimajor axis of the ellipse.
double b;
//! \f$ e \f$ is the angle made by the major axis and the i axis of the image frame \f$ (i,j) \f$.
double e;
protected:
//! The coordinates of the point corresponding to the smallest \f$ alpha \f$ angle. More things about the \f$ alpha \f$ are given at the beginning of the class description.
vpImagePoint iP1;
//! The coordinates of the point corresponding to the highest \f$ alpha \f$ angle. More things about the \f$ alpha \f$ are given at the beginning of the class description.
vpImagePoint iP2;
//! The smallest \f$ alpha \f$ angle.
double alpha1 ;
//! The highest \f$ alpha \f$ angle.
double alpha2 ;
//! Value of cos(e).
double ce;
//! Value of sin(e).
double se;
//! Stores the value of the \f$ alpha \f$ angle for each vpMeSite.
std::list<double> angle;
//! Surface
double m00;
//! Second order central moments
double mu11,mu20, mu02;
//! First order raw moments
double m10,m01;
//! Second order raw moments
double m11,m02,m20;
//! Threshold for the robust least square.
double thresholdWeight;
private:
//! True if the ellipse to track is a circle
bool circle ;
void computeAngle(vpImagePoint pt1, vpImagePoint pt2);
void sample(const vpImage<unsigned char>&image);
void reSample(const vpImage<unsigned char> &I) ;
void leastSquare() ;
void updateTheta();
void suppressPoints() ;
void seekExtremities(const vpImage<unsigned char> &I) ;
void setExtremities();
void getParameters() ;
void computeMoments();
#ifdef VISP_BUILD_DEPRECATED_FUNCTIONS
/*!
@name Deprecated functions
*/
//@{
void computeAngle(int ip1, int jp1,int ip2, int jp2) ;
void computeAngle(int ip1, int jp1, double &alpha1,
int ip2, int jp2, double &alpha2) ;
//@}
#endif //VISP_BUILD_DEPRECATED_FUNCTIONS
//Static Function
public:
static void display(const vpImage<unsigned char>& I, const vpImagePoint ¢er,
const double &A, const double &B, const double &E,
const double & smallalpha, const double &highalpha,
vpColor color = vpColor::green);
static void display(const vpImage<vpRGBa>& I, const vpImagePoint ¢er,
const double &A, const double &B, const double &E,
const double & smallalpha, const double &highalpha,
vpColor color = vpColor::green);
};
#endif
|