/usr/include/visp/vpFeaturePoint3D.h is in libvisp-dev 2.8.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | /****************************************************************************
*
* $Id: vpFeaturePoint3D.h 4056 2013-01-05 13:04:42Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* 3D point visual feature.
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#ifndef vpFeaturePoint3d_H
#define vpFeaturePoint3d_H
/*!
\file vpFeaturePoint3D.h
\brief class that defines the 3D point visual feature.
*/
#include <visp/vpMatrix.h>
#include <visp/vpBasicFeature.h>
#include <visp/vpPoint.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpRGBa.h>
/*!
\class vpFeaturePoint3D
\ingroup VsFeature3
\brief Class that defines the 3D point visual feature.
A 3D point visual feature corresponds to a 3D point with \f$
{\bf X} = (X,Y,Z)\f$ coordinates in the camera frame.
This class is intended to manipulate the 3D point visual feature
\f$ s = (X,Y,Z) \f$. The interaction matrix related to \f$ s \f$ is given by:
\f[
L = \left[
\begin{array}{rrrrrr}
-1 & 0 & 0 & 0 & -Z & Y \\
0 & -1 & 0 & Z & 0 & -X \\
0 & 0 & -1 & -Y & X & 0 \\
\end{array}
\right]
\f]
Two ways are allowed to initialize the feature.
- The first way by setting the feature values \f$(X,Y,Z)\f$ using
vpFeaturePoint3D member fonctions like set_X(), set_Y(), set_Z(),
or also buildFrom().
- The second by using the feature builder functionalities to
initialize the feature from a point structure like
vpFeatureBuilder::create (vpFeaturePoint3D &, const vpPoint &).
The interaction() method allows to compute the interaction matrix
\f$ L\f$ associated to the 3D point visual feature, while the
error() method computes the error vector \f$ (s - s^*)\f$ between the
current visual feature and the desired one.
The code below shows how to create a eye-in hand visual servoing
task using a 3D point feature \f$(X,Y,Z)\f$ that correspond to the
3D point coordinates in the camera frame. To control six degrees of
freedom, at least three other features must be considered like
vpFeatureThetaU visual features. First we create a current (\f$s\f$)
and desired (\f$s^*\f$) 3D point feature, set the task to use the
interaction matrix associated to the desired feature \f$L_{s^*}\f$
and than compute the camera velocity \f$v=-\lambda \; {L_{s^*}}^+ \;
(s-s^*)\f$. The current feature \f$s\f$ is updated in the while()
loop while \f$s^*\f$ is set to \f$Z^*=1\f$.
\code
#include <iostream>
#include <visp/vpFeaturePoint3D.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpServo.h>
int main()
{
vpServo task; // Visual servoing task
// Set the 3D point coordinates in the object frame: oP
vpPoint point;
point.setWorldCoordinates(0.1, -0.1, 0);
vpHomogeneousMatrix cMo; // Pose between the camera and the object frame
cMo.buildFrom(0, 0, 1.2, 0, 0, 0);
// ... cMo need here to be computed from a pose estimation
point.changeFrame(cMo); // Compute the 3D point coordinates in the camera frame cP = cMo * oP
// Creation of the current feature s
vpFeaturePoint3D s;
s.buildFrom(point); // Initialize the feature from the 3D point coordinates in the camera frame: s=(X,Y,Z)
s.print();
// Creation of the desired feature s*.
vpFeaturePoint3D s_star;
s_star.buildFrom(0, 0, 1); // Z*=1 meter
s_star.print();
// Set eye-in-hand control law.
// The computed velocities will be expressed in the camera frame
task.setServo(vpServo::EYEINHAND_CAMERA);
// Interaction matrix is computed with the desired visual features s*
task.setInteractionMatrixType(vpServo::DESIRED);
// Set the constant gain
double lambda = 0.8;
task.setLambda(lambda);
// Add the 3D point feature to the task
task.addFeature(s, s_star);
// Control loop
for ( ; ; ) {
// ... cMo need here to be estimated from for example a pose estimation.
point.changeFrame(cMo); // Compute the 3D point coordinates in the camera frame cP = cMo * oP
// Update the current 3D point visual feature
s.buildFrom(point);
// compute the control law
vpColVector v = task.computeControlLaw(); // camera velocity
}
}
\endcode
If you want to deal only with the \f$(X,Y)\f$ subset feature from the 3D
point feature, you have just to modify the addFeature() call in
the previous example by the following line. In that case, the dimension
of \f$s\f$ is two.
\code
// Add the (X,Y) subset feature from the 3D point visual feature to the task
task.addFeature(s, s_star, vpFeaturePoint3D::selectX() | vpFeaturePoint3D::selectY());
\endcode
If you want to build your own control law, this other example shows
how to create a current (\f$s\f$) and desired (\f$s^*\f$) 3D
point visual feature, compute the corresponding error
vector \f$(s-s^*)\f$ and finally build the interaction matrix \f$L_s\f$.
\code
#include <iostream>
#include <visp/vpFeaturePoint3D.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpMatrix.h>
int main()
{
// Set the 3D point coordinates in the object frame: oP
vpPoint point;
point.setWorldCoordinates(0.1, -0.1, 0);
vpHomogeneousMatrix cMo; // Pose between the camera and the object frame
cMo.buildFrom(0, 0, 1.2, 0, 0, 0);
// ... cMo need here to be computed from a pose estimation
point.changeFrame(cMo); // Compute the 3D point coordinates in the camera frame cP = cMo * oP
// Creation of the current feature s
vpFeaturePoint3D s;
s.buildFrom(point); // Initialize the feature from the 3D point coordinates in the camera frame
s.print();
// Creation of the desired feature s*.
vpFeaturePoint3D s_star;
s_star.buildFrom(0, 0, 1); // Z*=1 meter
s_star.print();
// Compute the L_s interaction matrix associated to the current feature
vpMatrix L = s.interaction();
std::cout << "L: " << L << std::endl;
// Compute the error vector (s-s*) for the 3D point feature
vpColVector e = s.error(s_star); // e = (s-s*)
std::cout << "e: " << e << std::endl;
}
\endcode
*/
class VISP_EXPORT vpFeaturePoint3D : public vpBasicFeature
{
public:
// basic construction
void init() ;
// basic constructor
vpFeaturePoint3D() ;
//! Destructor. Does nothing.
virtual ~vpFeaturePoint3D() { if (flags != NULL) delete [] flags; }
/*
/section Set coordinates
*/
// build feature from a point (vpPoint)
void buildFrom(const vpPoint &p) ;
// set the point XY and Z-coordinates
void buildFrom(const double X, const double Y, const double Z) ;
// set the point X-coordinates
void set_X(const double X) ;
// set the point Y-coordinates
void set_Y(const double Y) ;
// set the point depth (camera frame)
void set_Z(const double Z) ;
// set the point XY and Z-coordinates
void set_XYZ(const double X, const double Y, const double Z) ;
// get the point X-coordinates
double get_X() const ;
// get the point Y-coordinates
double get_Y() const ;
// get the point depth (camera frame)
double get_Z() const ;
/*
vpBasicFeature method instantiation
*/
/*!
Function used to select the \f$ X\f$ subset coordinate of the 3D point
visual feature.
This function is to use in conjunction with interaction() in order
to compute the interaction matrix associated to \f$ X\f$ feature.
See the interaction() method for an usage example.
This function is also useful in the vpServo class to indicate that
a subset of the visual feature is to use in the control law:
\code
vpFeaturePoint3D p;
vpServo task;
...
// Add the (X,Y) subset coordinates features from a 3D point to the task
task.addFeature(p, vpFeaturePoint3D::selectX() | vpFeaturePoint3D::selectY());
\endcode
\sa selectY(), selectZ()
*/
inline static unsigned int selectX() { return FEATURE_LINE[0] ; }
/*!
Function used to select the \f$ Y\f$ subset coordinate of the 3D point
visual feature.
This function is to use in conjunction with interaction() in order
to compute the interaction matrix associated to \f$ Y\f$ feature.
See the interaction() method for an usage example.
This function is also useful in the vpServo class to indicate that
a subset of the visual feature is to use in the control law:
\code
vpFeaturePoint3D p;
vpServo task;
...
// Add the (X,Y) subset coordinates features from a 3D point to the task
task.addFeature(p, vpFeaturePoint3D::selectX() | vpFeaturePoint3D::selectY());
\endcode
\sa selectX(), selectZ()
*/
inline static unsigned int selectY() { return FEATURE_LINE[1] ; }
/*!
Function used to select the \f$ Z\f$ subset coordinate of the 3D point
visual feature.
This function is to use in conjunction with interaction() in order
to compute the interaction matrix associated to \f$ Z\f$ feature.
See the interaction() method for an usage example.
This function is also useful in the vpServo class to indicate that
a subset of the visual feature is to use in the control law:
\code
vpFeaturePoint3D p;
vpServo task;
...
// Add the (Z) subset coordinate feature from a 3D point to the task
task.addFeature(p, vpFeaturePoint3D::selectZ());
\endcode
\sa selectX(), selectY()
*/
inline static unsigned int selectZ() { return FEATURE_LINE[2] ; }
// compute the interaction matrix from a subset a the possible features
vpMatrix interaction(const unsigned int select = FEATURE_ALL);
// compute the error between two visual features from a subset
// a the possible features
vpColVector error(const vpBasicFeature &s_star,
const unsigned int select = FEATURE_ALL) ;
// print the name of the feature
void print(const unsigned int select=FEATURE_ALL ) const ;
// feature duplication
vpFeaturePoint3D *duplicate() const ;
void display(const vpCameraParameters &cam,
const vpImage<unsigned char> &I,
const vpColor &color=vpColor::green,
unsigned int thickness=1) const ;
void display(const vpCameraParameters &cam,
const vpImage<vpRGBa> &I,
const vpColor &color=vpColor::green,
unsigned int thickness=1) const ;
} ;
#endif
/*
* Local variables:
* c-basic-offset: 2
* End:
*/
|