This file is indexed.

/usr/include/visp/vpFeatureMomentGravityCenterNormalized.h is in libvisp-dev 2.8.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/****************************************************************************
 *
 * $Id: vpFeatureMomentImpl.h 3317 2011-09-06 14:14:47Z fnovotny $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 *
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Implementation for all supported moment features.
 *
 * Authors:
 * Filip Novotny
 *
 *****************************************************************************/
/*!
  \file vpFeatureMomentGravityCenterNormalized.h
  \brief Implementation of the interaction matrix computation for vpMomentGravityCenterNormalized.
*/
#ifndef __FEATUREMOMENTGRAVITYCENTERNORMALIZED_H__
#define __FEATUREMOMENTGRAVITYCENTERNORMALIZED_H__
#include <visp/vpFeatureMoment.h>
#ifdef VISP_MOMENTS_COMBINE_MATRICES
class vpMomentDatabase;
/*!
  \class vpFeatureMomentGravityCenterNormalized

  \ingroup VsFeature2

  \brief Functionality computation for centered and normalized moment feature. Computes the interaction matrix associated with vpMomentGravityCenterNormalized.

  The interaction matrix for the moment feature can be deduced from \cite Tahri05z, equation (19).
  To do so, one must derive it and obtain a combination of interaction matrices by using (1).
  It allows to compute the interaction matrices for \f$ (x_n,y_n) \f$.

  These interaction matrices may be selected afterwards by calling vpFeatureMomentGravityCenterNormalized::interaction.
  The selection is done by the following methods: vpFeatureMomentGravityCenterNormalized::selectXn for \f$ L_{x_{n}} \f$ and vpFeatureMomentGravityCenterNormalized::selectYn for \f$ L_{y_{n}} \f$.
  You can use these shortcut selectors as follows:

  \code
  task.addFeature(db_src.getFeatureGravityNormalized(),db_dst.getFeatureGravityNormalized(),vpFeatureMomentGravityCenterNormalized::selectXn() | vpFeatureMomentGravityCenterNormalized::selectYn());
  \endcode

  The behaviour of this feature is very similar to vpFeatureMomentGravityCenter which also contains a sample code demonstrating a selection.

  This feature is often used in moment-based visual servoing to control the planar translation parameters.

  Minimum vpMomentObject order needed to compute this feature: 2 in dense mode and 3 in discrete mode.

  This feature depends on:
    - vpFeatureMomentGravityCenter
    - vpMomentGravityCenter
    - vpMomentAreaNormalized
    - vpFeatureMomentAreaNormalized

*/
class VISP_EXPORT vpFeatureMomentGravityCenterNormalized : public vpFeatureMoment{
 public:
        /*!
        Initializes the feature with information about the database of moment primitives, the object plane and feature database.
        \param moments : Moment database. The database of moment primitives (first parameter) is mandatory. It is used to access different moment values later used to compute the final matrix.
        \param A : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
        \param B : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
        \param C : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
        \param featureMoments : Feature database.

        */
        vpFeatureMomentGravityCenterNormalized(vpMomentDatabase& moments,double A, double B, double C,vpFeatureMomentDatabase* featureMoments=NULL) :
            vpFeatureMoment(moments,A,B,C,featureMoments,2)
        {}
        void compute_interaction();
        /*!
          associated moment name
          */
        const char* momentName(){ return "vpMomentGravityCenterNormalized";}
        /*!
            feature name
          */
        const char* name(){ return "vpFeatureMomentGravityCenterNormalized";}

        /*!
          Shortcut selector for \f$x_n\f$.
          */
        static unsigned int selectXn(){ return 1 << 0; }

        /*!
          Shortcut selector for \f$y_n\f$.
          */
        static unsigned int selectYn(){ return 1 << 1; }

};

#else
class vpMomentDatabase;
/*!
  \class vpFeatureMomentGravityCenterNormalized

  \ingroup VsFeature2

  \brief Functionality computation for centered and normalized moment feature. Computes the interaction matrix associated with vpMomentGravityCenterNormalized.

  It computes the interaction matrices for \f$ (x_n,y_n) \f$.
  The interaction matrix for the moment feature has the following expression:
  - In the discrete case:
  \f[
  L_{x_n} =
{
 \left[ \begin {array}{c} -Ax_{{n}}\theta+ \left( x_{{n}}e_{{1,1}}-y_{
{n}} \right) B-a_{{n}}C\\ \noalign{\medskip}Ax_{{n}}e_{{1,1}}+Bx_{{n}}
\theta\\ \noalign{\medskip} \left( -a_{{n}}-w_{{y}} \right) A+Bw_{{x}}
\\ \noalign{\medskip}a_{{n}}e_{{1,1}}{\it NA}+ \left( \eta_{{1,0}}e_{{
1,1}}+\eta_{{0,1}}-e_{{2,1}}-x_{{g}}e_{{1,1}}+\eta_{{0,1}}\theta
 \right) x_{{n}}+ \left( \eta_{{1,0}}-x_{{g}}\theta \right) y_{{n}}-{
\frac {x_{{n}}\eta_{{0,3}}}{{\it NA}}}\\ \noalign{\medskip} \left( -1+
\theta \right) a_{{n}}{\it NA}+ \left( e_{{1,2}}+x_{{g}}-\eta_{{0,1}}e
_{{1,1}}-2\,\eta_{{1,0}}+e_{{3,0}}+ \left( -x_{{g}}+\eta_{{1,0}}
 \right) \theta \right) x_{{n}}+e_{{1,1}}x_{{g}}y_{{n}}-a_{{n}}
\\ \noalign{\medskip}y_{{n}}\end {array} \right]
}^t

  L_{y_n} =


{
 \left[ \begin {array}{c}  \left( 1-\theta \right) y_{{n}}A+y_{{n}}e_{
{1,1}}B\\ \noalign{\medskip} \left( -x_{{n}}+y_{{n}}e_{{1,1}} \right)
A+ \left( -1+\theta \right) y_{{n}}B-a_{{n}}C\\ \noalign{\medskip}-Aw_
{{y}}+ \left( -a_{{n}}+w_{{x}} \right) B\\ \noalign{\medskip}\theta\,a
_{{n}}{\it NA}+ \left( -e_{{2,1}}+\eta_{{1,0}}e_{{1,1}}+\eta_{{0,1}}-x
_{{g}}e_{{1,1}}+ \left( \eta_{{0,1}}-y_{{g}} \right) \theta \right) y_
{{n}}+a_{{n}}-{\frac {y_{{n}}\eta_{{0,3}}}{{\it NA}}}
\\ \noalign{\medskip}-a_{{n}}e_{{1,1}}{\it NA}-x_{{n}}\eta_{{0,1}}+
 \left( e_{{1,2}}+y_{{g}}e_{{1,1}}-\eta_{{0,1}}e_{{1,1}}+x_{{g}}+e_{{3
,0}}-2\,\eta_{{1,0}}+ \left( -x_{{g}}+\eta_{{1,0}} \right) \theta
 \right) y_{{n}}\\ \noalign{\medskip}-x_{{n}}\end {array} \right]

}^t
  \f]
  - In the dense case:
  \f[
  L_{x_n} =
{
\left[ \begin {array}{c} -a_{{n}}C-1/2\,Ax_{{n}}-By_{{n}}
\\ \noalign{\medskip}1/2\,Bx_{{n}}\\ \noalign{\medskip} \left( -a_{{n}
}-w_{{y}} \right) A+Bw_{{x}}\\ \noalign{\medskip} \left( 4\,\eta_{{1,0
}}-1/2\,x_{{g}} \right) y_{{n}}+4\,a_{{n}}\eta_{{1,1}}+4\,x_{{n}}\eta_
{{0,1}}\\ \noalign{\medskip} \left( -4\,\eta_{{1,0}}+1/2\,x_{{g}}
 \right) x_{{n}}+ \left( -1-4\,\eta_{{2,0}} \right) a_{{n}}
\\ \noalign{\medskip}y_{{n}}\end {array} \right]


}^t

  L_{y_n} =
{
 \left[ \begin {array}{c} 1/2\,Ay_{{n}}\\ \noalign{\medskip}-1/2\,By_{
{n}}-a_{{n}}C-Ax_{{n}}\\ \noalign{\medskip}-Aw_{{y}}+ \left( -a_{{n}}+
w_{{x}} \right) B\\ \noalign{\medskip}4\,\theta\,a_{{n}}{\it NA}+
 \left( 4\,\eta_{{0,1}}-1/2\,y_{{g}} \right) y_{{n}}+a_{{n}}
\\ \noalign{\medskip} \left( -4\,\eta_{{1,0}}+1/2\,x_{{g}} \right) y_{
{n}}-4\,a_{{n}}\eta_{{1,1}}-4\,x_{{n}}\eta_{{0,1}}
\\ \noalign{\medskip}-x_{{n}}\end {array} \right]

}^t
  \f]
with:
    - \f$e_{i,j}=\frac{\mu_{i,j}}{NA}\f$
    - \f$NA=\mu_{2,0}+\mu_{0,2}\f$
    - \f$\theta=\frac{\eta_{0,2}}{NA}\f$
    - \f$\eta\f$ is the centered and normalized moment.

  These interaction matrices may be selected afterwards by calling vpFeatureMomentGravityCenterNormalized::interaction.
  The selection is done by the following methods: vpFeatureMomentGravityCenterNormalized::selectXn for \f$ L_{x_{n}} \f$ and vpFeatureMomentGravityCenterNormalized::selectYn for \f$ L_{y_{n}} \f$.
  You can use these shortcut selectors as follows:

  \code
  task.addFeature(db_src.getFeatureGravityNormalized(),db_dst.getFeatureGravityNormalized(),vpFeatureMomentGravityCenterNormalized::selectXn() | vpFeatureMomentGravityCenterNormalized::selectYn());
  \endcode

  The behaviour of this feature is very similar to vpFeatureMomentGravityCenter which also contains a sample code demonstrating a selection.

  This feature is often used in moment-based visual servoing to control the planar translation parameters.

  Minimum vpMomentObject order needed to compute this feature: 2 in dense mode and 3 in discrete mode.

  This feature depends on:
    - vpFeatureMomentGravityCenter
    - vpMomentGravityCenter
    - vpMomentAreaNormalized
    - vpFeatureMomentAreaNormalized

*/
class VISP_EXPORT vpFeatureMomentGravityCenterNormalized : public vpFeatureMoment{
 public:
        /*!
        Initializes the feature with information about the database of moment primitives, the object plane and feature database.
        \param moments : Moment database. The database of moment primitives (first parameter) is mandatory. It is used to access different moment values later used to compute the final matrix.
        \param A : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
        \param B : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
        \param C : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
        \param featureMoments : Feature database.

        */
        vpFeatureMomentGravityCenterNormalized(vpMomentDatabase& moments,double A, double B, double C,vpFeatureMomentDatabase* featureMoments=NULL) :
            vpFeatureMoment(moments,A,B,C,featureMoments,2)
        {}
        void compute_interaction();
        /*!
          associated moment name
          */
        const char* momentName(){ return "vpMomentGravityCenterNormalized";}
        /*!
            feature name
          */
        const char* name(){ return "vpFeatureMomentGravityCenterNormalized";}

        /*!
          Shortcut selector for \f$x_n\f$.
          */
        static unsigned int selectXn(){ return 1 << 0; }

        /*!
          Shortcut selector for \f$y_n\f$.
          */
        static unsigned int selectYn(){ return 1 << 1; }

};
#endif
#endif