/usr/include/visp/vpFeatureMomentGravityCenterNormalized.h is in libvisp-dev 2.8.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | /****************************************************************************
*
* $Id: vpFeatureMomentImpl.h 3317 2011-09-06 14:14:47Z fnovotny $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Implementation for all supported moment features.
*
* Authors:
* Filip Novotny
*
*****************************************************************************/
/*!
\file vpFeatureMomentGravityCenterNormalized.h
\brief Implementation of the interaction matrix computation for vpMomentGravityCenterNormalized.
*/
#ifndef __FEATUREMOMENTGRAVITYCENTERNORMALIZED_H__
#define __FEATUREMOMENTGRAVITYCENTERNORMALIZED_H__
#include <visp/vpFeatureMoment.h>
#ifdef VISP_MOMENTS_COMBINE_MATRICES
class vpMomentDatabase;
/*!
\class vpFeatureMomentGravityCenterNormalized
\ingroup VsFeature2
\brief Functionality computation for centered and normalized moment feature. Computes the interaction matrix associated with vpMomentGravityCenterNormalized.
The interaction matrix for the moment feature can be deduced from \cite Tahri05z, equation (19).
To do so, one must derive it and obtain a combination of interaction matrices by using (1).
It allows to compute the interaction matrices for \f$ (x_n,y_n) \f$.
These interaction matrices may be selected afterwards by calling vpFeatureMomentGravityCenterNormalized::interaction.
The selection is done by the following methods: vpFeatureMomentGravityCenterNormalized::selectXn for \f$ L_{x_{n}} \f$ and vpFeatureMomentGravityCenterNormalized::selectYn for \f$ L_{y_{n}} \f$.
You can use these shortcut selectors as follows:
\code
task.addFeature(db_src.getFeatureGravityNormalized(),db_dst.getFeatureGravityNormalized(),vpFeatureMomentGravityCenterNormalized::selectXn() | vpFeatureMomentGravityCenterNormalized::selectYn());
\endcode
The behaviour of this feature is very similar to vpFeatureMomentGravityCenter which also contains a sample code demonstrating a selection.
This feature is often used in moment-based visual servoing to control the planar translation parameters.
Minimum vpMomentObject order needed to compute this feature: 2 in dense mode and 3 in discrete mode.
This feature depends on:
- vpFeatureMomentGravityCenter
- vpMomentGravityCenter
- vpMomentAreaNormalized
- vpFeatureMomentAreaNormalized
*/
class VISP_EXPORT vpFeatureMomentGravityCenterNormalized : public vpFeatureMoment{
public:
/*!
Initializes the feature with information about the database of moment primitives, the object plane and feature database.
\param moments : Moment database. The database of moment primitives (first parameter) is mandatory. It is used to access different moment values later used to compute the final matrix.
\param A : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
\param B : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
\param C : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
\param featureMoments : Feature database.
*/
vpFeatureMomentGravityCenterNormalized(vpMomentDatabase& moments,double A, double B, double C,vpFeatureMomentDatabase* featureMoments=NULL) :
vpFeatureMoment(moments,A,B,C,featureMoments,2)
{}
void compute_interaction();
/*!
associated moment name
*/
const char* momentName(){ return "vpMomentGravityCenterNormalized";}
/*!
feature name
*/
const char* name(){ return "vpFeatureMomentGravityCenterNormalized";}
/*!
Shortcut selector for \f$x_n\f$.
*/
static unsigned int selectXn(){ return 1 << 0; }
/*!
Shortcut selector for \f$y_n\f$.
*/
static unsigned int selectYn(){ return 1 << 1; }
};
#else
class vpMomentDatabase;
/*!
\class vpFeatureMomentGravityCenterNormalized
\ingroup VsFeature2
\brief Functionality computation for centered and normalized moment feature. Computes the interaction matrix associated with vpMomentGravityCenterNormalized.
It computes the interaction matrices for \f$ (x_n,y_n) \f$.
The interaction matrix for the moment feature has the following expression:
- In the discrete case:
\f[
L_{x_n} =
{
\left[ \begin {array}{c} -Ax_{{n}}\theta+ \left( x_{{n}}e_{{1,1}}-y_{
{n}} \right) B-a_{{n}}C\\ \noalign{\medskip}Ax_{{n}}e_{{1,1}}+Bx_{{n}}
\theta\\ \noalign{\medskip} \left( -a_{{n}}-w_{{y}} \right) A+Bw_{{x}}
\\ \noalign{\medskip}a_{{n}}e_{{1,1}}{\it NA}+ \left( \eta_{{1,0}}e_{{
1,1}}+\eta_{{0,1}}-e_{{2,1}}-x_{{g}}e_{{1,1}}+\eta_{{0,1}}\theta
\right) x_{{n}}+ \left( \eta_{{1,0}}-x_{{g}}\theta \right) y_{{n}}-{
\frac {x_{{n}}\eta_{{0,3}}}{{\it NA}}}\\ \noalign{\medskip} \left( -1+
\theta \right) a_{{n}}{\it NA}+ \left( e_{{1,2}}+x_{{g}}-\eta_{{0,1}}e
_{{1,1}}-2\,\eta_{{1,0}}+e_{{3,0}}+ \left( -x_{{g}}+\eta_{{1,0}}
\right) \theta \right) x_{{n}}+e_{{1,1}}x_{{g}}y_{{n}}-a_{{n}}
\\ \noalign{\medskip}y_{{n}}\end {array} \right]
}^t
L_{y_n} =
{
\left[ \begin {array}{c} \left( 1-\theta \right) y_{{n}}A+y_{{n}}e_{
{1,1}}B\\ \noalign{\medskip} \left( -x_{{n}}+y_{{n}}e_{{1,1}} \right)
A+ \left( -1+\theta \right) y_{{n}}B-a_{{n}}C\\ \noalign{\medskip}-Aw_
{{y}}+ \left( -a_{{n}}+w_{{x}} \right) B\\ \noalign{\medskip}\theta\,a
_{{n}}{\it NA}+ \left( -e_{{2,1}}+\eta_{{1,0}}e_{{1,1}}+\eta_{{0,1}}-x
_{{g}}e_{{1,1}}+ \left( \eta_{{0,1}}-y_{{g}} \right) \theta \right) y_
{{n}}+a_{{n}}-{\frac {y_{{n}}\eta_{{0,3}}}{{\it NA}}}
\\ \noalign{\medskip}-a_{{n}}e_{{1,1}}{\it NA}-x_{{n}}\eta_{{0,1}}+
\left( e_{{1,2}}+y_{{g}}e_{{1,1}}-\eta_{{0,1}}e_{{1,1}}+x_{{g}}+e_{{3
,0}}-2\,\eta_{{1,0}}+ \left( -x_{{g}}+\eta_{{1,0}} \right) \theta
\right) y_{{n}}\\ \noalign{\medskip}-x_{{n}}\end {array} \right]
}^t
\f]
- In the dense case:
\f[
L_{x_n} =
{
\left[ \begin {array}{c} -a_{{n}}C-1/2\,Ax_{{n}}-By_{{n}}
\\ \noalign{\medskip}1/2\,Bx_{{n}}\\ \noalign{\medskip} \left( -a_{{n}
}-w_{{y}} \right) A+Bw_{{x}}\\ \noalign{\medskip} \left( 4\,\eta_{{1,0
}}-1/2\,x_{{g}} \right) y_{{n}}+4\,a_{{n}}\eta_{{1,1}}+4\,x_{{n}}\eta_
{{0,1}}\\ \noalign{\medskip} \left( -4\,\eta_{{1,0}}+1/2\,x_{{g}}
\right) x_{{n}}+ \left( -1-4\,\eta_{{2,0}} \right) a_{{n}}
\\ \noalign{\medskip}y_{{n}}\end {array} \right]
}^t
L_{y_n} =
{
\left[ \begin {array}{c} 1/2\,Ay_{{n}}\\ \noalign{\medskip}-1/2\,By_{
{n}}-a_{{n}}C-Ax_{{n}}\\ \noalign{\medskip}-Aw_{{y}}+ \left( -a_{{n}}+
w_{{x}} \right) B\\ \noalign{\medskip}4\,\theta\,a_{{n}}{\it NA}+
\left( 4\,\eta_{{0,1}}-1/2\,y_{{g}} \right) y_{{n}}+a_{{n}}
\\ \noalign{\medskip} \left( -4\,\eta_{{1,0}}+1/2\,x_{{g}} \right) y_{
{n}}-4\,a_{{n}}\eta_{{1,1}}-4\,x_{{n}}\eta_{{0,1}}
\\ \noalign{\medskip}-x_{{n}}\end {array} \right]
}^t
\f]
with:
- \f$e_{i,j}=\frac{\mu_{i,j}}{NA}\f$
- \f$NA=\mu_{2,0}+\mu_{0,2}\f$
- \f$\theta=\frac{\eta_{0,2}}{NA}\f$
- \f$\eta\f$ is the centered and normalized moment.
These interaction matrices may be selected afterwards by calling vpFeatureMomentGravityCenterNormalized::interaction.
The selection is done by the following methods: vpFeatureMomentGravityCenterNormalized::selectXn for \f$ L_{x_{n}} \f$ and vpFeatureMomentGravityCenterNormalized::selectYn for \f$ L_{y_{n}} \f$.
You can use these shortcut selectors as follows:
\code
task.addFeature(db_src.getFeatureGravityNormalized(),db_dst.getFeatureGravityNormalized(),vpFeatureMomentGravityCenterNormalized::selectXn() | vpFeatureMomentGravityCenterNormalized::selectYn());
\endcode
The behaviour of this feature is very similar to vpFeatureMomentGravityCenter which also contains a sample code demonstrating a selection.
This feature is often used in moment-based visual servoing to control the planar translation parameters.
Minimum vpMomentObject order needed to compute this feature: 2 in dense mode and 3 in discrete mode.
This feature depends on:
- vpFeatureMomentGravityCenter
- vpMomentGravityCenter
- vpMomentAreaNormalized
- vpFeatureMomentAreaNormalized
*/
class VISP_EXPORT vpFeatureMomentGravityCenterNormalized : public vpFeatureMoment{
public:
/*!
Initializes the feature with information about the database of moment primitives, the object plane and feature database.
\param moments : Moment database. The database of moment primitives (first parameter) is mandatory. It is used to access different moment values later used to compute the final matrix.
\param A : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
\param B : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
\param C : Plane coefficient in a \f$ A \times x+B \times y + C = \frac{1}{Z} \f$ plane.
\param featureMoments : Feature database.
*/
vpFeatureMomentGravityCenterNormalized(vpMomentDatabase& moments,double A, double B, double C,vpFeatureMomentDatabase* featureMoments=NULL) :
vpFeatureMoment(moments,A,B,C,featureMoments,2)
{}
void compute_interaction();
/*!
associated moment name
*/
const char* momentName(){ return "vpMomentGravityCenterNormalized";}
/*!
feature name
*/
const char* name(){ return "vpFeatureMomentGravityCenterNormalized";}
/*!
Shortcut selector for \f$x_n\f$.
*/
static unsigned int selectXn(){ return 1 << 0; }
/*!
Shortcut selector for \f$y_n\f$.
*/
static unsigned int selectYn(){ return 1 << 1; }
};
#endif
#endif
|