/usr/lib/perl5/Verilog/Language.pm is in libverilog-perl 3.403-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 | # See copyright, etc in below POD section.
######################################################################
=pod
=head1 NAME
Verilog::Language - Verilog language utilities
=head1 SYNOPSIS
use Verilog::Language;
$result = Verilog::Language::is_keyword ("wire"); # true
$result = Verilog::Language::is_compdirect ("`notundef"); # false
$result = Verilog::Language::number_value ("4'b111"); # 8
$result = Verilog::Language::number_bits ("32'h1b"); # 32
$result = Verilog::Language::number_signed ("1'sh1"); # 1
@vec = Verilog::Language::split_bus ("[31,5:4]"); # 31, 5, 4
@vec = Verilog::Language::split_bus_nocomma ("[31:29]"); # 31, 30, 29
$result = Verilog::Language::strip_comments ("a/*b*/c"); # ac
=head1 DESCRIPTION
Verilog::Language provides general utilities for using the Verilog
Language, such as parsing numbers or determining what keywords exist.
General functions will be added as needed.
=head1 FUNCTIONS
=over 4
=item Verilog::Language::is_keyword ($symbol_string)
Return true if the given symbol string is a Verilog reserved keyword.
Value indicates the language standard as per the `begin_keywords macro,
'1364-1995', '1364-2001', '1364-2005', '1800-2005', '1800-2009',
'1800-2012' or 'VAMS'.
=item Verilog::Language::is_compdirect ($symbol_string)
Return true if the given symbol string is a Verilog compiler directive.
=item Verilog::Language::is_gateprim ($symbol_string)
Return true if the given symbol is a built in gate primitive; for example
"buf", "xor", etc.
=item Verilog::Language::language_keywords ($year)
Returns a hash for keywords for given language standard year, where the
value of the hash is the standard in which it was defined.
=item Verilog::Language::language_standard ($year)
Sets the language standard to indicate what are keywords. If undef, all
standards apply. The year is indicates the language standard as per the
`begin_keywords macro, '1364-1995', '1364-2001', '1364-2005', '1800-2005'
'1800-2009' or '1800-2012'.
=item Verilog::Language::language_maximum
Returns the greatest language currently standardized, presently
'1800-2012'.
=item Verilog::Language::number_bigint ($number_string)
Return the numeric value of a Verilog value stored as a Math::BigInt, or
undef if incorrectly formed. You must 'use Math::BigInt' yourself before
calling this function. Note bigints do not have an exact size, so NOT of a
Math::BigInt may return a different value than verilog. See also
number_value and number_bitvector.
=item Verilog::Language::number_bits ($number_string)
Return the number of bits in a value string, or undef if incorrectly
formed, _or_ not specified.
=item Verilog::Language::number_bitvector ($number_string)
Return the numeric value of a Verilog value stored as a Bit::Vector, or
undef if incorrectly formed. You must 'use Bit::Vector' yourself before
calling this function. The size of the Vector will be that returned by
number_bits.
=item Verilog::Language::number_signed ($number_string)
Return true if the Verilog value is signed, else undef.
=item Verilog::Language::number_value ($number_string)
Return the numeric value of a Verilog value, or undef if incorrectly
formed. It ignores any signed Verilog attributes, but is is returned as a
perl signed integer, so it may fail for over 31 bit values. See also
number_bigint and number_bitvector.
=item Verilog::Language::split_bus ($bus)
Return a list of expanded arrays. When passed a string like
"foo[5:1:2,10:9]", it will return a array with ("foo[5]", "foo[3]", ...).
It correctly handles connectivity expansion also, so that "x[1:0] = y[3:0]"
will get intuitive results.
=item Verilog::Language::split_bus_nocomma ($bus)
As with split_bus, but faster. Only supports simple decimal colon
separated array specifications, such as "foo[3:0]".
=item Verilog::Language::strip_comments ($text)
Return text with any // or /**/ comments stripped, correctly handing quoted
strings. Newlines will be preserved in this process.
=back
=head1 DISTRIBUTION
Verilog-Perl is part of the L<http://www.veripool.org/> free Verilog EDA
software tool suite. The latest version is available from CPAN and from
L<http://www.veripool.org/verilog-perl>.
Copyright 2000-2014 by Wilson Snyder. This package is free software; you
can redistribute it and/or modify it under the terms of either the GNU
Lesser General Public License Version 3 or the Perl Artistic License Version 2.0.
=head1 AUTHORS
Wilson Snyder <wsnyder@wsnyder.org>
=head1 SEE ALSO
L<Verilog-Perl>,
L<Verilog::EditFiles>
L<Verilog::Parser>,
L<Verilog::ParseSig>,
L<Verilog::Getopt>
And the L<http://www.veripool.org/verilog-mode>Verilog-Mode package for Emacs.
=cut
######################################################################
package Verilog::Language;
require 5.000;
require Exporter;
use strict;
use vars qw($VERSION %Keyword %Keywords %Compdirect $Standard %Gateprim);
use Carp;
######################################################################
#### Configuration Section
$VERSION = '3.403';
######################################################################
#### Internal Variables
foreach my $kwd (qw(
always and assign begin buf bufif0 bufif1 case
casex casez cmos deassign default defparam
disable else end endcase endfunction endmodule
endprimitive endspecify endtable endtask event
for force forever fork function highz0
highz1 if initial inout input integer join large
macromodule medium module nand negedge
nmos nor not notif0 notif1 or output parameter
pmos posedge primitive pull0 pull1 pulldown
pullup rcmos real realtime reg release repeat
rnmos rpmos rtran rtranif0 rtranif1 scalared
small specify strength strong0 strong1
supply0 supply1 table task time tran tranif0
tranif1 tri tri0 tri1 triand trior trireg
vectored wait wand weak0 weak1 while wire wor
xnor xor
)) { $Keywords{'1364-1995'}{$kwd} = '1364-1995'; }
foreach my $kwd (qw(
automatic cell config design edge endconfig endgenerate
generate genvar ifnone incdir include instance liblist
library localparam
noshowcancelled pulsestyle_ondetect pulsestyle_onevent
showcancelled signed specparam unsigned use
)) { $Keywords{'1364-2001'}{$kwd} = '1364-2001'; }
foreach my $kwd (qw(
uwire
)) { $Keywords{'1364-2005'}{$kwd} = '1364-2005'; }
foreach my $kwd (qw(
alias always_comb always_ff always_latch assert assume
before bind bins binsof bit break byte chandle class
clocking const constraint context continue cover
covergroup coverpoint cross dist do endclass endclocking
endgroup endinterface endpackage endprogram endproperty
endsequence enum expect export extends extern final
first_match foreach forkjoin iff ignore_bins
illegal_bins import inside int interface intersect
join_any join_none local logic longint matches modport
new null package packed priority program property
protected pure rand randc randcase randsequence ref
return sequence shortint shortreal solve static string
struct super tagged this throughout timeprecision
timeunit type typedef union unique var virtual void
wait_order wildcard with within
)) { $Keywords{'1800-2005'}{$kwd} = '1800-2005'; }
foreach my $kwd (qw(
accept_on checker endchecker eventually global implies
let nexttime reject_on restrict s_always s_eventually
s_nexttime s_until s_until_with strong sync_accept_on
sync_reject_on unique0 until until_with untyped weak
)) { $Keywords{'1800-2009'}{$kwd} = '1800-2009'; }
foreach my $kwd (qw(
implements nettype interconnect soft
)) { $Keywords{'1800-2012'}{$kwd} = '1800-2012'; }
foreach my $kwd (qw(
above abs absdelay abstol ac_stim access acos acosh
aliasparam analog analysis asin asinh assert atan atan2
atanh branch ceil connect connectmodule connectrules
continuous cos cosh cross ddt ddt_nature ddx discipline
discrete domain driver_update endconnectrules
enddiscipline endnature endparamset exclude exp
final_step flicker_noise floor flow from ground hypot
idt idt_nature idtmod inf initial_step laplace_nd
laplace_np laplace_zd laplace_zp last_crossing limexp
ln log max merged min nature net_resolution noise_table
paramset potential pow resolveto sin sinh slew split
sqrt string tan tanh timer transition units white_noise
wreal zi_nd zi_np zi_zd zi_zp
)) { $Keywords{'VAMS'}{$kwd} = 'VAMS'; }
foreach my $kwd (
# Speced
"`celldefine",
"`define", # Preprocessor
"`else", # Preprocessor
"`endcelldefine",
"`endif", # Preprocessor
"`ifdef", # Preprocessor
"`include", # Preprocessor
"`nounconnected_drive",
"`resetall",
"`timescale",
"`unconnected_drive",
"`undef", # Preprocessor
"`undefineall", # Preprocessor
# Commercial Extensions
"`accelerate", # Verilog-XL compatibility
"`autoexpand_vectornets", # Verilog-XL compatibility
"`default_decay_time", # Verilog spec - delays only
"`default_trireg_strength", # Verilog spec
"`delay_mode_distributed", # Verilog spec - delays only
"`delay_mode_path", # Verilog spec - delays only
"`delay_mode_unit", # Verilog spec - delays only
"`delay_mode_zero", # Verilog spec - delays only
"`disable_portfaults", # Verilog-XL compatibility
"`enable_portfaults", # Verilog-XL compatibility
"`endprotect", # Many tools - pre encryption
"`endprotected", # Many tools - post encryption
"`expand_vectornets", # Verilog-XL compatibility
"`noaccelerate", # Verilog-XL compatibility
"`noexpand_vectornets", # Verilog-XL compatibility
"`noremove_gatenames", # Verilog-XL compatibility
"`noremove_netnames", # Verilog-XL compatibility
"`nosuppress_faults", # Verilog-XL compatibility
"`nounconnected_drive", # Verilog-XL compatibility
"`portcoerce", # Verilog-XL compatibility
"`protect", # Many tools - pre encryption
"`protected", # Many tools - post encryption
"`remove_gatenames", # Verilog-XL compatibility
"`remove_netnames", # Verilog-XL compatibility
"`suppress_faults", # Verilog-XL compatibility
) { $Keywords{$kwd}{'1364-1995'} = $Compdirect{$kwd} = '1364-1995'; }
foreach my $kwd (
"`default_nettype", "`elsif", "`undef", "`ifndef",
"`file", "`line",
) { $Keywords{$kwd}{'1364-2001'} = $Compdirect{$kwd} = '1364-2001'; }
foreach my $kwd (
"`pragma",
) { $Keywords{$kwd}{'1364-2005'} = $Compdirect{$kwd} = '1364-2005'; }
foreach my $kwd (
"`default_discipline", "`default_transition",
) { $Keywords{$kwd}{'1364-2005'} = $Compdirect{$kwd} = '1364-2005'; }
language_standard (language_maximum()); # Default standard
foreach my $kwd (qw(
and buf bufif0 bufif1 cmos nand nmos nor not notif0
notif1 or pmos pulldown pullup rcmos rnmos rpmos rtran
rtranif0 rtranif1 tran tranif0 tranif1 xnor xor
)) { $Gateprim{$kwd} = '1364-1995'; }
######################################################################
#### Keyword utilities
sub language_maximum {
return "1800-2012";
}
sub _language_kwd_hash {
my $standard = shift;
my @subsets;
if ($standard eq '1995' || $standard eq '1364-1995') {
$Standard = '1364-1995';
@subsets = ('1364-1995');
} elsif ($standard eq '2001' || $standard eq '1364-2001' || $standard eq '1364-2001-noconfig') {
$Standard = '1364-2001';
@subsets = ('1364-2001', '1364-1995');
} elsif ($standard eq '1364-2005') {
$Standard = '1364-2005';
@subsets = ('1364-2005', '1364-2001', '1364-1995');
} elsif ($standard eq 'sv31' || $standard eq '1800-2005') {
$Standard = '1800-2005';
@subsets = ('1800-2005', '1364-2005', '1364-2001', '1364-1995');
} elsif ($standard eq '1800-2009') {
$Standard = '1800-2009';
@subsets = ('1800-2009', '1800-2005', '1364-2005', '1364-2001', '1364-1995');
} elsif ($standard eq 'latest' || $standard eq '1800-2012') {
$Standard = '1800-2012';
@subsets = ('1800-2012', '1800-2009', '1800-2005', '1364-2005', '1364-2001', '1364-1995');
} elsif ($standard =~ /^V?AMS/) {
$Standard = 'VAMS';
@subsets = ('VAMS', '1364-2005', '1364-2001', '1364-1995');
} else {
croak "%Error: Verilog::Language::language_standard passed bad value: $standard,";
}
# Update keyword list to present language
# (We presume the language_standard rarely changes, so it's faster to compute the list.)
my %keywords = ();
foreach my $ss (@subsets) {
foreach my $kwd (%{$Keywords{$ss}}) {
$keywords{$kwd} = $ss;
}
}
return %keywords;
}
sub language_standard {
my $standard = shift;
if (defined $standard) {
%Keyword = _language_kwd_hash($standard);
}
return $Standard;
}
sub language_keywords {
my $standard = shift || $Standard;
return _language_kwd_hash($standard);
}
sub is_keyword {
my $symbol = shift;
return ($Keyword{$symbol});
}
sub is_compdirect {
my $symbol = shift;
return ($Compdirect{$symbol});
}
sub is_gateprim {
my $symbol = shift;
return ($Gateprim{$symbol});
}
######################################################################
#### String utilities
sub strip_comments {
return $_[0] if $_[0] !~ m!/!s; # Fast path
my $text = shift;
# Spec says that // has no special meaning inside /**/
my $quote; my $olcmt; my $cmt;
my $out = "";
while ($text =~ m!(.*?)(//|/\*|\*/|\n|\"|$)!sg) {
$out .= $1 if !$olcmt && !$cmt;
my $t = $2;
if ($2 eq '"') {
$out .= $t;
$quote = ! $quote;
} elsif (!$quote && !$olcmt && $t eq '/*') {
$cmt = 1;
} elsif (!$quote && !$cmt && $t eq '//') {
$olcmt = 1;
} elsif ($cmt && $t eq '*/') {
$cmt = 0;
} elsif ($t eq "\n") {
$olcmt = 0;
$out .= $t;
} else {
$out .= $t if !$olcmt && !$cmt;
}
}
return $out;
}
######################################################################
#### Numeric utilities
sub number_bits {
my $number = shift;
if ($number =~ /^\s*([0-9]+)\s*\'/i) {
return $1;
}
return undef;
}
sub number_signed {
my $number = shift;
if ($number =~ /\'\s*s/i) {
return 1;
}
return undef;
}
sub number_value {
my $number = shift;
$number =~ s/[_ ]//g;
if ($number =~ /\'s?h([0-9a-f]+)$/i) {
return (hex ($1));
}
elsif ($number =~ /\'s?o([0-9a-f]+)$/i) {
return (oct ($1));
}
elsif ($number =~ /\'s?b([0-1]+)$/i) {
my $val = 0;
$number = $1;
foreach my $bit (split(//, $number)) {
$val = ($val<<1) | ($bit=='1'?1:0);
}
return ($val);
}
elsif ($number =~ /\'s?d?([0-9]+)$/i
|| $number =~ /^(-?[0-9]+)$/i) {
return ($1);
}
return undef;
}
sub number_bigint {
my $number = shift;
$number =~ s/[_ ]//g;
if ($number =~ /\'s?h([0-9a-f]+)$/i) {
return (Math::BigInt->new("0x".$1));
}
elsif ($number =~ /\'s?o([0-9a-f]+)$/i) {
my $digits = $1;
my $vec = Math::BigInt->new();
my $len = length($digits);
my $bit = 0;
for (my $index=$len-1; $index>=0; $index--, $bit+=3) {
my $digit = substr($digits,$index,1);
my $val = Math::BigInt->new($digit);
$val = $val->blsft($bit,2);
$vec->bior($val);
}
return ($vec);
}
elsif ($number =~ /\'s?b([0-1]+)$/i) {
return (Math::BigInt->new("0b".$1));
}
elsif ($number =~ /\'s?d?0*([0-9]+)$/i
|| $number =~ /^0*([0-9]+)$/i) {
return (Math::BigInt->new($1));
}
return undef;
}
sub number_bitvector {
my $number = shift;
$number =~ s/[_ ]//g;
my $bits = number_bits($number) || 32;
if ($number =~ /\'s?h([0-9a-f]+)$/i) {
return (Bit::Vector->new_Hex($bits,$1));
}
elsif ($number =~ /\'s?o([0-9a-f]+)$/i) {
my $digits = $1;
my $vec = Bit::Vector->new($bits);
my $len = length($digits);
my $bit = 0;
for (my $index=$len-1; $index>=0; $index--, $bit+=3) {
my $digit = substr($digits,$index,1);
$vec->Bit_On($bit+2) if ($digit & 4);
$vec->Bit_On($bit+1) if ($digit & 2);
$vec->Bit_On($bit+0) if ($digit & 1);
}
return ($vec);
}
elsif ($number =~ /\'s?b([0-1]+)$/i) {
return (Bit::Vector->new_Bin($bits,$1));
}
elsif ($number =~ /\'s?d?([0-9]+)$/i
|| $number =~ /^([0-9]+)$/i) {
return (Bit::Vector->new_Dec($bits,$1));
}
return undef;
}
######################################################################
#### Signal utilities
sub split_bus {
my $bus = shift;
if ($bus !~ /\[/) {
# Fast case: No bussing
return $bus;
} elsif ($bus =~ /^([^\[]+\[)([0-9]+):([0-9]+)(\][^\]]*)$/) {
# Middle speed case: Simple max:min
my $bit;
my @vec = ();
if ($2 >= $3) {
for ($bit = $2; $bit >= $3; $bit --) {
push @vec, $1 . $bit . $4;
}
} else {
for ($bit = $2; $bit <= $3; $bit ++) {
push @vec, $1 . $bit . $4;
}
}
return @vec;
} else {
# Complex case: x:y:z,p,... etc
# Do full parsing
my @pretext = (); # [brnum]
my @expanded = (); # [brnum][bitoccurance]
my $inbra = 0;
my $brnum = 0;
my ($beg,$end,$step);
foreach (split (/([:\]\[,])/, $bus)) {
if (/^\[/) {
$inbra = 1;
$pretext[$brnum] .= $_;
}
if (!$inbra) {
# Not in bracket, just remember text
$pretext[$brnum] .= $_;
next;
}
if (/[\],]/) {
if (defined $beg) {
# End of bus piece
#print "Got seg $beg $end $step\n";
my $bit;
if ($beg >= $end) {
for ($bit = $beg; $bit >= $end; $bit -= $step) {
push @{$expanded[$brnum]}, $bit;
}
} else {
for ($bit = $beg; $bit <= $end; $bit += $step) {
push @{$expanded[$brnum]}, $bit;
}
}
}
$beg = undef;
# Now what?
if (/^\]/) {
$inbra = 0;
$brnum++;
$pretext[$brnum] .= $_;
}
elsif (/,/) {
$inbra = 1;
}
} elsif (/:/) {
$inbra++;
}
else {
if ($inbra == 1) { # Begin value
$beg = $end = number_value ($_); # [2'b11:2'b00] is legal
$step = 1;
} elsif ($inbra == 2) { # End value
$end = number_value ($_); # [2'b11:2'b00] is legal
} elsif ($inbra == 3) { # Middle value
$step = number_value ($_); # [2'b11:2'b00] is legal
}
# Else ignore extra colons
}
}
# Determine max size of any bracket expansion array
my $br;
my $max_size = $#{$expanded[0]};
for ($br=1; $br<$brnum; $br++) {
my $len = $#{$expanded[$br]};
if ($len < 0) {
push @{$expanded[$br]}, "";
$len = 0;
}
$max_size = $len if $max_size < $len;
}
my $i;
my @vec = ();
for ($i=0; $i<=$max_size; $i++) {
$bus = "";
for ($br=0; $br<$brnum; $br++) {
#print "i $i br $br >", $pretext[$br],"<\n";
$bus .= $pretext[$br] . $expanded[$br][$i % (1+$#{$expanded[$br]})];
}
$bus .= $pretext[$br]; # Trailing stuff
push @vec, $bus;
}
return @vec;
}
}
sub split_bus_nocomma {
# Faster version of split_bus
my $bus = shift;
if ($bus !~ /:/) {
# Fast case: No bussing
return $bus;
} elsif ($bus =~ /^([^\[]+\[)([0-9]+):([0-9]+)(\][^\]]*)$/) {
# Middle speed case: Simple max:min
my $bit;
my @vec = ();
if ($2 >= $3) {
for ($bit = $2; $bit >= $3; $bit --) {
push @vec, $1 . $bit . $4;
}
} else {
for ($bit = $2; $bit <= $3; $bit ++) {
push @vec, $1 . $bit . $4;
}
}
return @vec;
} else {
# Complex case: x:y etc
# Do full parsing
my @pretext = (); # [brnum]
my @expanded = (); # [brnum][bitoccurance]
my $inbra = 0;
my $brnum = 0;
my ($beg,$end);
foreach (split (/([:\]\[])/, $bus)) {
if (/^\[/) {
$inbra = 1;
$pretext[$brnum] .= $_;
}
if (!$inbra) {
# Not in bracket, just remember text
$pretext[$brnum] .= $_;
next;
}
if (/[\]]/) {
if (defined $beg) {
# End of bus piece
#print "Got seg $beg $end\n";
my $bit;
if ($beg >= $end) {
for ($bit = $beg; $bit >= $end; $bit--) {
push @{$expanded[$brnum]}, $bit;
}
} else {
for ($bit = $beg; $bit <= $end; $bit++) {
push @{$expanded[$brnum]}, $bit;
}
}
}
$beg = undef;
# Now what?
if (/^\]/) {
$inbra = 0;
$brnum++;
$pretext[$brnum] .= $_;
}
} elsif (/:/) {
$inbra++;
}
else {
if ($inbra == 1) { # Begin value
$beg = $end = $_;
} elsif ($inbra == 2) { # End value
$end = $_;
}
# Else ignore extra colons
}
}
# Determine max size of any bracket expansion array
my $br;
my $max_size = $#{$expanded[0]};
for ($br=1; $br<$brnum; $br++) {
my $len = $#{$expanded[$br]};
if ($len < 0) {
push @{$expanded[$br]}, "";
$len = 0;
}
$max_size = $len if $max_size < $len;
}
my $i;
my @vec = ();
for ($i=0; $i<=$max_size; $i++) {
$bus = "";
for ($br=0; $br<$brnum; $br++) {
#print "i $i br $br >", $pretext[$br],"<\n";
$bus .= $pretext[$br] . $expanded[$br][$i % (1+$#{$expanded[$br]})];
}
$bus .= $pretext[$br]; # Trailing stuff
push @vec, $bus;
}
return @vec;
}
}
######################################################################
#### Package return
1;
|