This file is indexed.

/usr/include/tbb/partitioner.h is in libtbb-dev 4.2~20130725-1.1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/*
    Copyright 2005-2013 Intel Corporation.  All Rights Reserved.

    This file is part of Threading Building Blocks.

    Threading Building Blocks is free software; you can redistribute it
    and/or modify it under the terms of the GNU General Public License
    version 2 as published by the Free Software Foundation.

    Threading Building Blocks is distributed in the hope that it will be
    useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Threading Building Blocks; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    As a special exception, you may use this file as part of a free software
    library without restriction.  Specifically, if other files instantiate
    templates or use macros or inline functions from this file, or you compile
    this file and link it with other files to produce an executable, this
    file does not by itself cause the resulting executable to be covered by
    the GNU General Public License.  This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

#ifndef __TBB_partitioner_H
#define __TBB_partitioner_H

#ifndef __TBB_INITIAL_CHUNKS
#define __TBB_INITIAL_CHUNKS 2
#endif
#ifndef __TBB_RANGE_POOL_CAPACITY
#define __TBB_RANGE_POOL_CAPACITY 8
#endif
#ifndef __TBB_INIT_DEPTH
#define __TBB_INIT_DEPTH 5
#endif

#include "task.h"
#include "aligned_space.h"
#include "atomic.h"

#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
    // Workaround for overzealous compiler warnings
    #pragma warning (push)
    #pragma warning (disable: 4244)
#endif

namespace tbb {

class auto_partitioner;
class simple_partitioner;
class affinity_partitioner;
namespace interface6 {
    namespace internal {
        class affinity_partition_type;
    }
}

namespace internal {
size_t __TBB_EXPORTED_FUNC get_initial_auto_partitioner_divisor();

//! Defines entry point for affinity partitioner into tbb run-time library.
class affinity_partitioner_base_v3: no_copy {
    friend class tbb::affinity_partitioner;
    friend class tbb::interface6::internal::affinity_partition_type;
    //! Array that remembers affinities of tree positions to affinity_id.
    /** NULL if my_size==0. */
    affinity_id* my_array;
    //! Number of elements in my_array.
    size_t my_size;
    //! Zeros the fields.
    affinity_partitioner_base_v3() : my_array(NULL), my_size(0) {}
    //! Deallocates my_array.
    ~affinity_partitioner_base_v3() {resize(0);}
    //! Resize my_array.
    /** Retains values if resulting size is the same. */
    void __TBB_EXPORTED_METHOD resize( unsigned factor );
};

//! Provides backward-compatible methods for partition objects without affinity.
class partition_type_base {
public:
    void set_affinity( task & ) {}
    void note_affinity( task::affinity_id ) {}
    task* continue_after_execute_range() {return NULL;}
    bool decide_whether_to_delay() {return false;}
    void spawn_or_delay( bool, task& b ) {
        task::spawn(b);
    }
};

template<typename Range, typename Body, typename Partitioner> class start_scan;

} // namespace internal
//! @endcond

namespace serial {
namespace interface6 {
template<typename Range, typename Body, typename Partitioner> class start_for;
}
}

namespace interface6 {
//! @cond INTERNAL
namespace internal {
using namespace tbb::internal;
template<typename Range, typename Body, typename Partitioner> class start_for;
template<typename Range, typename Body, typename Partitioner> class start_reduce;

//! Join task node that contains shared flag for stealing feedback
class flag_task: public task {
public:
    tbb::atomic<bool> my_child_stolen;
    flag_task() { my_child_stolen = false; }
    task* execute() { return NULL; }
    static void mark_task_stolen(task &t) {
        tbb::atomic<bool> &flag = static_cast<flag_task*>(t.parent())->my_child_stolen;
#if TBB_USE_THREADING_TOOLS
        // Threading tools respect lock prefix but report false-positive data-race via plain store
        flag.fetch_and_store<release>(true);
#else
        flag = true;
#endif //TBB_USE_THREADING_TOOLS
    }
    static bool is_peer_stolen(task &t) {
        return static_cast<flag_task*>(t.parent())->my_child_stolen;
    }
};

//! Task to signal the demand without carrying the work
class signal_task: public task {
public:
    task* execute() {
        if( is_stolen_task() ) {
            flag_task::mark_task_stolen(*this);
        }
        return NULL;
    }
};

//! Depth is a relative depth of recursive division inside a range pool. Relative depth allows
//! infinite absolute depth of the recursion for heavily imbalanced workloads with range represented
//! by a number that cannot fit into machine word.
typedef unsigned char depth_t;

//! Range pool stores ranges of type T in a circular buffer with MaxCapacity
template <typename T, depth_t MaxCapacity>
class range_vector {
    depth_t my_head;
    depth_t my_tail;
    depth_t my_size;
    depth_t my_depth[MaxCapacity]; // relative depths of stored ranges
    tbb::aligned_space<T, MaxCapacity> my_pool;

public:
    //! initialize via first range in pool
    range_vector(const T& elem) : my_head(0), my_tail(0), my_size(1) {
        my_depth[0] = 0;
        new( my_pool.begin() ) T(elem);//TODO: std::move?
    }
    ~range_vector() {
        while( !empty() ) pop_back();
    }
    bool empty() const { return my_size == 0; }
    depth_t size() const { return my_size; }
    //! Populates range pool via ranges up to max depth or while divisible
    //! max_depth starts from 0, e.g. value 2 makes 3 ranges in the pool up to two 1/4 pieces
    void split_to_fill(depth_t max_depth) {
        while( my_size < MaxCapacity && my_depth[my_head] < max_depth
          && my_pool.begin()[my_head].is_divisible() ) {
            depth_t prev = my_head;
            my_head = (my_head + 1) % MaxCapacity;
            new(my_pool.begin()+my_head) T(my_pool.begin()[prev]); // copy TODO: std::move?
            my_pool.begin()[prev].~T(); // instead of assignment
            new(my_pool.begin()+prev) T(my_pool.begin()[my_head], split()); // do 'inverse' split
            my_depth[my_head] = ++my_depth[prev];
            my_size++;
        }
    }
    void pop_back() {
        __TBB_ASSERT(my_size > 0, "range_vector::pop_back() with empty size");
        my_pool.begin()[my_head].~T();
        my_size--;
        my_head = (my_head + MaxCapacity - 1) % MaxCapacity;
    }
    void pop_front() {
        __TBB_ASSERT(my_size > 0, "range_vector::pop_front() with empty size");
        my_pool.begin()[my_tail].~T();
        my_size--;
        my_tail = (my_tail + 1) % MaxCapacity;
    }
    T& back() {
        __TBB_ASSERT(my_size > 0, "range_vector::back() with empty size");
        return my_pool.begin()[my_head];
    }
    T& front() {
        __TBB_ASSERT(my_size > 0, "range_vector::front() with empty size");
        return my_pool.begin()[my_tail];
    }
    //! similarly to front(), returns depth of the first range in the pool
    depth_t front_depth() {
        __TBB_ASSERT(my_size > 0, "range_vector::front_depth() with empty size");
        return my_depth[my_tail];
    }
};

//! Provides default methods for partition objects and common algorithm blocks.
template <typename Partition>
struct partition_type_base {
    // decision makers
    void set_affinity( task & ) {}
    void note_affinity( task::affinity_id ) {}
    bool check_being_stolen(task &) { return false; } // part of old should_execute_range()
    bool check_for_demand(task &) { return false; }
    bool divisions_left() { return true; } // part of old should_execute_range()
    bool should_create_trap() { return false; }
    depth_t max_depth() { return 0; }
    void align_depth(depth_t) { }
    // common function blocks
    Partition& derived() { return *static_cast<Partition*>(this); }
    template<typename StartType>
    flag_task* split_work(StartType &start) {
        flag_task* parent_ptr = start.create_continuation(); // the type here is to express expectation
        start.set_parent(parent_ptr);
        parent_ptr->set_ref_count(2);
        StartType& right_work = *new( parent_ptr->allocate_child() ) StartType(start, split());
        start.spawn(right_work);
        return parent_ptr;
    }
    template<typename StartType, typename Range>
    void execute(StartType &start, Range &range) {
        // The algorithm in a few words ([]-denotes calls to decision methods of partitioner):
        // [If this task is stolen, adjust depth and divisions if necessary, set flag].
        // If range is divisible {
        //    Spread the work while [initial divisions left];
        //    Create trap task [if necessary];
        // }
        // If not divisible or [max depth is reached], execute, else do the range pool part
        task* parent_ptr = start.parent();
        if( range.is_divisible() ) {
            if( derived().divisions_left() )
                do parent_ptr = split_work(start); // split until divisions_left()
                while( range.is_divisible() && derived().divisions_left() );
            if( derived().should_create_trap() ) { // only for range pool
                if( parent_ptr->ref_count() > 1 ) { // create new parent if necessary
                    parent_ptr = start.create_continuation();
                    start.set_parent(parent_ptr);
                } else __TBB_ASSERT(parent_ptr->ref_count() == 1, NULL);
                parent_ptr->set_ref_count(2); // safe because parent has only one reference
                signal_task& right_signal = *new( parent_ptr->allocate_child() ) signal_task();
                start.spawn(right_signal); // pure signal is to avoid deep recursion in the end
            }
        }
        if( !range.is_divisible() || !derived().max_depth() )
            start.run_body( range ); // simple partitioner goes always here
        else { // do range pool
            internal::range_vector<Range, Partition::range_pool_size> range_pool(range);
            do {
                range_pool.split_to_fill(derived().max_depth()); // fill range pool
                if( derived().check_for_demand( start ) ) {
                    if( range_pool.size() > 1 ) {
                        parent_ptr = start.create_continuation();
                        start.set_parent(parent_ptr);
                        parent_ptr->set_ref_count(2);
                        StartType& right_work = *new( parent_ptr->allocate_child() ) StartType(start, range_pool.front(), range_pool.front_depth());
                        start.spawn(right_work);
                        range_pool.pop_front();
                        continue;
                    }
                    if( range_pool.back().is_divisible() ) // was not enough depth to fork a task
                        continue; // note: check_for_demand() should guarantee increasing max_depth() next time
                }
                start.run_body( range_pool.back() );
                range_pool.pop_back();
            } while( !range_pool.empty() && !start.is_cancelled() );
        }
    }
};

//! Provides default methods for auto (adaptive) partition objects.
template <typename Partition>
struct auto_partition_type_base : partition_type_base<Partition> {
    size_t my_divisor;
    depth_t my_max_depth;
    auto_partition_type_base() : my_max_depth(__TBB_INIT_DEPTH) {
        my_divisor = tbb::internal::get_initial_auto_partitioner_divisor()*__TBB_INITIAL_CHUNKS/4;
        __TBB_ASSERT(my_divisor, "initial value of get_initial_auto_partitioner_divisor() is not valid");
    }
    auto_partition_type_base(auto_partition_type_base &src, split) {
        my_max_depth = src.my_max_depth;
#if __TBB_INITIAL_TASK_IMBALANCE
        if( src.my_divisor <= 1 ) my_divisor = 0;
        else my_divisor = src.my_divisor = (src.my_divisor+1u) / 2u;
#else
        my_divisor = src.my_divisor / 2u;
        src.my_divisor = src.my_divisor - my_divisor; // TODO: check the effect separately
        if(my_divisor) src.my_max_depth += static_cast<depth_t>(__TBB_Log2(src.my_divisor/my_divisor));
#endif
    }
    bool check_being_stolen( task &t) { // part of old should_execute_range()
        if( !my_divisor ) { // if not from the top P tasks of binary tree
            my_divisor = 1; // TODO: replace by on-stack flag (partition_state's member)?
            if( t.is_stolen_task() ) {
#if TBB_USE_EXCEPTIONS
                // RTTI is available, check whether the cast is valid
                __TBB_ASSERT(dynamic_cast<flag_task*>(t.parent()), 0);
                // correctness of the cast relies on avoiding the root task for which:
                // - initial value of my_divisor != 0 (protected by separate assertion)
                // - is_stolen_task() always returns false for the root task.
#endif
                flag_task::mark_task_stolen(t);
                my_max_depth++;
                return true;
            }
        }
        return false;
    }
    bool divisions_left() { // part of old should_execute_range()
        if( my_divisor > 1 ) return true;
        if( my_divisor && my_max_depth > 1 ) { // can split the task and once more internally. TODO: on-stack flag instead
            // keep same fragmentation while splitting for the local task pool
            my_max_depth--;
            my_divisor = 0; // decrease max_depth once per task
            return true;
        } else return false;
    }
    bool should_create_trap() {
        return my_divisor > 0;
    }
    bool check_for_demand(task &t) {
        if( flag_task::is_peer_stolen(t) ) {
            my_max_depth++;
            return true;
        } else return false;
    }
    void align_depth(depth_t base) {
        __TBB_ASSERT(base <= my_max_depth, 0);
        my_max_depth -= base;
    }
    depth_t max_depth() { return my_max_depth; }
};

//! Provides default methods for affinity (adaptive) partition objects.
class affinity_partition_type : public auto_partition_type_base<affinity_partition_type> {
    static const unsigned factor_power = 4;
    static const unsigned factor = 1<<factor_power;
    bool my_delay;
    unsigned map_begin, map_end, map_mid;
    tbb::internal::affinity_id* my_array;
    void set_mid() {
        unsigned d = (map_end - map_begin)/2; // we could add 1 but it is rather for LIFO affinity
        if( d > factor )
            d &= 0u-factor;
        map_mid = map_end - d;
    }
public:
    affinity_partition_type( tbb::internal::affinity_partitioner_base_v3& ap ) {
        __TBB_ASSERT( (factor&(factor-1))==0, "factor must be power of two" );
        ap.resize(factor);
        my_array = ap.my_array;
        map_begin = 0;
        map_end = unsigned(ap.my_size);
        set_mid();
        my_delay = true;
        my_divisor /= __TBB_INITIAL_CHUNKS; // let exactly P tasks to be distributed across workers
        my_max_depth = factor_power+1; // the first factor_power ranges will be spawned, and >=1 ranges should be left
        __TBB_ASSERT( my_max_depth < __TBB_RANGE_POOL_CAPACITY, 0 );
    }
    affinity_partition_type(affinity_partition_type& p, split)
        : auto_partition_type_base<affinity_partition_type>(p, split()), my_array(p.my_array) {
        __TBB_ASSERT( p.map_end-p.map_begin<factor || (p.map_end-p.map_begin)%factor==0, NULL );
        map_end = p.map_end;
        map_begin = p.map_end = p.map_mid;
        set_mid(); p.set_mid();
        my_delay = p.my_delay;
    }
    void set_affinity( task &t ) {
        if( map_begin<map_end )
            t.set_affinity( my_array[map_begin] );
    }
    void note_affinity( task::affinity_id id ) {
        if( map_begin<map_end )
            my_array[map_begin] = id;
    }
    bool check_for_demand( task &t ) {
        if( !my_delay ) {
            if( map_mid<map_end ) {
                __TBB_ASSERT(my_max_depth>__TBB_Log2(map_end-map_mid), 0);
                return true;// do not do my_max_depth++ here, but be sure my_max_depth is big enough
            }
            if( flag_task::is_peer_stolen(t) ) {
                my_max_depth++;
                return true;
            }
        } else my_delay = false;
        return false;
    }
    bool divisions_left() { // part of old should_execute_range()
        return my_divisor > 1;
    }
    bool should_create_trap() {
        return false;
    }
    static const unsigned range_pool_size = __TBB_RANGE_POOL_CAPACITY;
};

class auto_partition_type: public auto_partition_type_base<auto_partition_type> {
public:
    auto_partition_type( const auto_partitioner& ) {}
    auto_partition_type( auto_partition_type& src, split)
      : auto_partition_type_base<auto_partition_type>(src, split()) {}
    static const unsigned range_pool_size = __TBB_RANGE_POOL_CAPACITY;
};

class simple_partition_type: public partition_type_base<simple_partition_type> {
public:
    simple_partition_type( const simple_partitioner& ) {}
    simple_partition_type( const simple_partition_type&, split ) {}
    //! simplified algorithm
    template<typename StartType, typename Range>
    void execute(StartType &start, Range &range) {
        while( range.is_divisible() )
            split_work( start );
        start.run_body( range );
    }
    //static const unsigned range_pool_size = 1; - not necessary because execute() is overridden
};

//! Backward-compatible partition for auto and affinity partition objects.
class old_auto_partition_type: public tbb::internal::partition_type_base {
    size_t num_chunks;
    static const size_t VICTIM_CHUNKS = 4;
public:
    bool should_execute_range(const task &t) {
        if( num_chunks<VICTIM_CHUNKS && t.is_stolen_task() )
            num_chunks = VICTIM_CHUNKS;
        return num_chunks==1;
    }
    old_auto_partition_type( const auto_partitioner& )
      : num_chunks(internal::get_initial_auto_partitioner_divisor()*__TBB_INITIAL_CHUNKS/4) {}
    old_auto_partition_type( const affinity_partitioner& )
      : num_chunks(internal::get_initial_auto_partitioner_divisor()*__TBB_INITIAL_CHUNKS/4) {}
    old_auto_partition_type( old_auto_partition_type& pt, split ) {
        num_chunks = pt.num_chunks = (pt.num_chunks+1u) / 2u;
    }
};

} // namespace interfaceX::internal
//! @endcond
} // namespace interfaceX

//! A simple partitioner
/** Divides the range until the range is not divisible.
    @ingroup algorithms */
class simple_partitioner {
public:
    simple_partitioner() {}
private:
    template<typename Range, typename Body, typename Partitioner> friend class serial::interface6::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface6::internal::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface6::internal::start_reduce;
    template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
    // backward compatibility
    class partition_type: public internal::partition_type_base {
    public:
        bool should_execute_range(const task& ) {return false;}
        partition_type( const simple_partitioner& ) {}
        partition_type( const partition_type&, split ) {}
    };
    // new implementation just extends existing interface
    typedef interface6::internal::simple_partition_type task_partition_type;
};

//! An auto partitioner
/** The range is initial divided into several large chunks.
    Chunks are further subdivided into smaller pieces if demand detected and they are divisible.
    @ingroup algorithms */
class auto_partitioner {
public:
    auto_partitioner() {}

private:
    template<typename Range, typename Body, typename Partitioner> friend class serial::interface6::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface6::internal::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface6::internal::start_reduce;
    template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
    // backward compatibility
    typedef interface6::internal::old_auto_partition_type partition_type;
    // new implementation just extends existing interface
    typedef interface6::internal::auto_partition_type task_partition_type;
};

//! An affinity partitioner
class affinity_partitioner: internal::affinity_partitioner_base_v3 {
public:
    affinity_partitioner() {}

private:
    template<typename Range, typename Body, typename Partitioner> friend class serial::interface6::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface6::internal::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface6::internal::start_reduce;
    template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
    // backward compatibility - for parallel_scan only
    typedef interface6::internal::old_auto_partition_type partition_type;
    // new implementation just extends existing interface
    typedef interface6::internal::affinity_partition_type task_partition_type;
};

} // namespace tbb

#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
    #pragma warning (pop)
#endif // warning 4244 is back
#undef __TBB_INITIAL_CHUNKS
#undef __TBB_RANGE_POOL_CAPACITY
#undef __TBB_INIT_DEPTH
#endif /* __TBB_partitioner_H */