/usr/include/tbb/concurrent_hash_map.h is in libtbb-dev 4.2~20130725-1.1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 | /*
Copyright 2005-2013 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks.
Threading Building Blocks is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
Threading Building Blocks is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Threading Building Blocks; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software
library without restriction. Specifically, if other files instantiate
templates or use macros or inline functions from this file, or you compile
this file and link it with other files to produce an executable, this
file does not by itself cause the resulting executable to be covered by
the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
#ifndef __TBB_concurrent_hash_map_H
#define __TBB_concurrent_hash_map_H
#include "tbb_stddef.h"
#if !TBB_USE_EXCEPTIONS && _MSC_VER
// Suppress "C++ exception handler used, but unwind semantics are not enabled" warning in STL headers
#pragma warning (push)
#pragma warning (disable: 4530)
#endif
#include <iterator>
#include <utility> // Need std::pair
#include <cstring> // Need std::memset
#if !TBB_USE_EXCEPTIONS && _MSC_VER
#pragma warning (pop)
#endif
#include "cache_aligned_allocator.h"
#include "tbb_allocator.h"
#include "spin_rw_mutex.h"
#include "atomic.h"
#include "aligned_space.h"
#include "tbb_exception.h"
#include "tbb_profiling.h"
#include "internal/_concurrent_unordered_impl.h" // Need tbb_hasher
#if __TBB_INITIALIZER_LISTS_PRESENT
#include <initializer_list>
#endif
#if TBB_USE_PERFORMANCE_WARNINGS || __TBB_STATISTICS
#include <typeinfo>
#endif
#if __TBB_STATISTICS
#include <stdio.h>
#endif
namespace tbb {
//! hash_compare that is default argument for concurrent_hash_map
template<typename Key>
struct tbb_hash_compare {
static size_t hash( const Key& a ) { return tbb_hasher(a); }
static bool equal( const Key& a, const Key& b ) { return a == b; }
};
namespace interface5 {
template<typename Key, typename T, typename HashCompare = tbb_hash_compare<Key>, typename A = tbb_allocator<std::pair<Key, T> > >
class concurrent_hash_map;
//! @cond INTERNAL
namespace internal {
using namespace tbb::internal;
//! Type of a hash code.
typedef size_t hashcode_t;
//! Node base type
struct hash_map_node_base : tbb::internal::no_copy {
//! Mutex type
typedef spin_rw_mutex mutex_t;
//! Scoped lock type for mutex
typedef mutex_t::scoped_lock scoped_t;
//! Next node in chain
hash_map_node_base *next;
mutex_t mutex;
};
//! Incompleteness flag value
static hash_map_node_base *const rehash_req = reinterpret_cast<hash_map_node_base*>(size_t(3));
//! Rehashed empty bucket flag
static hash_map_node_base *const empty_rehashed = reinterpret_cast<hash_map_node_base*>(size_t(0));
//! base class of concurrent_hash_map
class hash_map_base {
public:
//! Size type
typedef size_t size_type;
//! Type of a hash code.
typedef size_t hashcode_t;
//! Segment index type
typedef size_t segment_index_t;
//! Node base type
typedef hash_map_node_base node_base;
//! Bucket type
struct bucket : tbb::internal::no_copy {
//! Mutex type for buckets
typedef spin_rw_mutex mutex_t;
//! Scoped lock type for mutex
typedef mutex_t::scoped_lock scoped_t;
mutex_t mutex;
node_base *node_list;
};
//! Count of segments in the first block
static size_type const embedded_block = 1;
//! Count of segments in the first block
static size_type const embedded_buckets = 1<<embedded_block;
//! Count of segments in the first block
static size_type const first_block = 8; //including embedded_block. perfect with bucket size 16, so the allocations are power of 4096
//! Size of a pointer / table size
static size_type const pointers_per_table = sizeof(segment_index_t) * 8; // one segment per bit
//! Segment pointer
typedef bucket *segment_ptr_t;
//! Segment pointers table type
typedef segment_ptr_t segments_table_t[pointers_per_table];
//! Hash mask = sum of allocated segment sizes - 1
atomic<hashcode_t> my_mask;
//! Segment pointers table. Also prevents false sharing between my_mask and my_size
segments_table_t my_table;
//! Size of container in stored items
atomic<size_type> my_size; // It must be in separate cache line from my_mask due to performance effects
//! Zero segment
bucket my_embedded_segment[embedded_buckets];
#if __TBB_STATISTICS
atomic<unsigned> my_info_resizes; // concurrent ones
mutable atomic<unsigned> my_info_restarts; // race collisions
atomic<unsigned> my_info_rehashes; // invocations of rehash_bucket
#endif
//! Constructor
hash_map_base() {
std::memset( this, 0, pointers_per_table*sizeof(segment_ptr_t) // 32*4=128 or 64*8=512
+ sizeof(my_size) + sizeof(my_mask) // 4+4 or 8+8
+ embedded_buckets*sizeof(bucket) ); // n*8 or n*16
for( size_type i = 0; i < embedded_block; i++ ) // fill the table
my_table[i] = my_embedded_segment + segment_base(i);
my_mask = embedded_buckets - 1;
__TBB_ASSERT( embedded_block <= first_block, "The first block number must include embedded blocks");
#if __TBB_STATISTICS
my_info_resizes = 0; // concurrent ones
my_info_restarts = 0; // race collisions
my_info_rehashes = 0; // invocations of rehash_bucket
#endif
}
//! @return segment index of given index in the array
static segment_index_t segment_index_of( size_type index ) {
return segment_index_t( __TBB_Log2( index|1 ) );
}
//! @return the first array index of given segment
static segment_index_t segment_base( segment_index_t k ) {
return (segment_index_t(1)<<k & ~segment_index_t(1));
}
//! @return segment size except for @arg k == 0
static size_type segment_size( segment_index_t k ) {
return size_type(1)<<k; // fake value for k==0
}
//! @return true if @arg ptr is valid pointer
static bool is_valid( void *ptr ) {
return reinterpret_cast<uintptr_t>(ptr) > uintptr_t(63);
}
//! Initialize buckets
static void init_buckets( segment_ptr_t ptr, size_type sz, bool is_initial ) {
if( is_initial ) std::memset(ptr, 0, sz*sizeof(bucket) );
else for(size_type i = 0; i < sz; i++, ptr++) {
*reinterpret_cast<intptr_t*>(&ptr->mutex) = 0;
ptr->node_list = rehash_req;
}
}
//! Add node @arg n to bucket @arg b
static void add_to_bucket( bucket *b, node_base *n ) {
__TBB_ASSERT(b->node_list != rehash_req, NULL);
n->next = b->node_list;
b->node_list = n; // its under lock and flag is set
}
//! Exception safety helper
struct enable_segment_failsafe : tbb::internal::no_copy {
segment_ptr_t *my_segment_ptr;
enable_segment_failsafe(segments_table_t &table, segment_index_t k) : my_segment_ptr(&table[k]) {}
~enable_segment_failsafe() {
if( my_segment_ptr ) *my_segment_ptr = 0; // indicate no allocation in progress
}
};
//! Enable segment
void enable_segment( segment_index_t k, bool is_initial = false ) {
__TBB_ASSERT( k, "Zero segment must be embedded" );
enable_segment_failsafe watchdog( my_table, k );
cache_aligned_allocator<bucket> alloc;
size_type sz;
__TBB_ASSERT( !is_valid(my_table[k]), "Wrong concurrent assignment");
if( k >= first_block ) {
sz = segment_size( k );
segment_ptr_t ptr = alloc.allocate( sz );
init_buckets( ptr, sz, is_initial );
itt_hide_store_word( my_table[k], ptr );
sz <<= 1;// double it to get entire capacity of the container
} else { // the first block
__TBB_ASSERT( k == embedded_block, "Wrong segment index" );
sz = segment_size( first_block );
segment_ptr_t ptr = alloc.allocate( sz - embedded_buckets );
init_buckets( ptr, sz - embedded_buckets, is_initial );
ptr -= segment_base(embedded_block);
for(segment_index_t i = embedded_block; i < first_block; i++) // calc the offsets
itt_hide_store_word( my_table[i], ptr + segment_base(i) );
}
itt_store_word_with_release( my_mask, sz-1 );
watchdog.my_segment_ptr = 0;
}
//! Get bucket by (masked) hashcode
bucket *get_bucket( hashcode_t h ) const throw() { // TODO: add throw() everywhere?
segment_index_t s = segment_index_of( h );
h -= segment_base(s);
segment_ptr_t seg = my_table[s];
__TBB_ASSERT( is_valid(seg), "hashcode must be cut by valid mask for allocated segments" );
return &seg[h];
}
// internal serial rehashing helper
void mark_rehashed_levels( hashcode_t h ) throw () {
segment_index_t s = segment_index_of( h );
while( segment_ptr_t seg = my_table[++s] )
if( seg[h].node_list == rehash_req ) {
seg[h].node_list = empty_rehashed;
mark_rehashed_levels( h + ((hashcode_t)1<<s) ); // optimized segment_base(s)
}
}
//! Check for mask race
// Splitting into two functions should help inlining
inline bool check_mask_race( const hashcode_t h, hashcode_t &m ) const {
hashcode_t m_now, m_old = m;
m_now = (hashcode_t) itt_load_word_with_acquire( my_mask );
if( m_old != m_now )
return check_rehashing_collision( h, m_old, m = m_now );
return false;
}
//! Process mask race, check for rehashing collision
bool check_rehashing_collision( const hashcode_t h, hashcode_t m_old, hashcode_t m ) const {
__TBB_ASSERT(m_old != m, NULL); // TODO?: m arg could be optimized out by passing h = h&m
if( (h & m_old) != (h & m) ) { // mask changed for this hashcode, rare event
// condition above proves that 'h' has some other bits set beside 'm_old'
// find next applicable mask after m_old //TODO: look at bsl instruction
for( ++m_old; !(h & m_old); m_old <<= 1 ) // at maximum few rounds depending on the first block size
;
m_old = (m_old<<1) - 1; // get full mask from a bit
__TBB_ASSERT((m_old&(m_old+1))==0 && m_old <= m, NULL);
// check whether it is rehashing/ed
if( itt_load_word_with_acquire(get_bucket(h & m_old)->node_list) != rehash_req )
{
#if __TBB_STATISTICS
my_info_restarts++; // race collisions
#endif
return true;
}
}
return false;
}
//! Insert a node and check for load factor. @return segment index to enable.
segment_index_t insert_new_node( bucket *b, node_base *n, hashcode_t mask ) {
size_type sz = ++my_size; // prefix form is to enforce allocation after the first item inserted
add_to_bucket( b, n );
// check load factor
if( sz >= mask ) { // TODO: add custom load_factor
segment_index_t new_seg = __TBB_Log2( mask+1 ); //optimized segment_index_of
__TBB_ASSERT( is_valid(my_table[new_seg-1]), "new allocations must not publish new mask until segment has allocated");
static const segment_ptr_t is_allocating = (segment_ptr_t)2;
if( !itt_hide_load_word(my_table[new_seg])
&& as_atomic(my_table[new_seg]).compare_and_swap(is_allocating, NULL) == NULL )
return new_seg; // The value must be processed
}
return 0;
}
//! Prepare enough segments for number of buckets
void reserve(size_type buckets) {
if( !buckets-- ) return;
bool is_initial = !my_size;
for( size_type m = my_mask; buckets > m; m = my_mask )
enable_segment( segment_index_of( m+1 ), is_initial );
}
//! Swap hash_map_bases
void internal_swap(hash_map_base &table) {
std::swap(this->my_mask, table.my_mask);
std::swap(this->my_size, table.my_size);
for(size_type i = 0; i < embedded_buckets; i++)
std::swap(this->my_embedded_segment[i].node_list, table.my_embedded_segment[i].node_list);
for(size_type i = embedded_block; i < pointers_per_table; i++)
std::swap(this->my_table[i], table.my_table[i]);
}
};
template<typename Iterator>
class hash_map_range;
//! Meets requirements of a forward iterator for STL */
/** Value is either the T or const T type of the container.
@ingroup containers */
template<typename Container, typename Value>
class hash_map_iterator
: public std::iterator<std::forward_iterator_tag,Value>
{
typedef Container map_type;
typedef typename Container::node node;
typedef hash_map_base::node_base node_base;
typedef hash_map_base::bucket bucket;
template<typename C, typename T, typename U>
friend bool operator==( const hash_map_iterator<C,T>& i, const hash_map_iterator<C,U>& j );
template<typename C, typename T, typename U>
friend bool operator!=( const hash_map_iterator<C,T>& i, const hash_map_iterator<C,U>& j );
template<typename C, typename T, typename U>
friend ptrdiff_t operator-( const hash_map_iterator<C,T>& i, const hash_map_iterator<C,U>& j );
template<typename C, typename U>
friend class hash_map_iterator;
template<typename I>
friend class hash_map_range;
void advance_to_next_bucket() { // TODO?: refactor to iterator_base class
size_t k = my_index+1;
while( my_bucket && k <= my_map->my_mask ) {
// Following test uses 2's-complement wizardry
if( k& (k-2) ) // not the beginning of a segment
++my_bucket;
else my_bucket = my_map->get_bucket( k );
my_node = static_cast<node*>( my_bucket->node_list );
if( hash_map_base::is_valid(my_node) ) {
my_index = k; return;
}
++k;
}
my_bucket = 0; my_node = 0; my_index = k; // the end
}
#if !defined(_MSC_VER) || defined(__INTEL_COMPILER)
template<typename Key, typename T, typename HashCompare, typename A>
friend class interface5::concurrent_hash_map;
#else
public: // workaround
#endif
//! concurrent_hash_map over which we are iterating.
const Container *my_map;
//! Index in hash table for current item
size_t my_index;
//! Pointer to bucket
const bucket *my_bucket;
//! Pointer to node that has current item
node *my_node;
hash_map_iterator( const Container &map, size_t index, const bucket *b, node_base *n );
public:
//! Construct undefined iterator
hash_map_iterator() {}
hash_map_iterator( const hash_map_iterator<Container,typename Container::value_type> &other ) :
my_map(other.my_map),
my_index(other.my_index),
my_bucket(other.my_bucket),
my_node(other.my_node)
{}
Value& operator*() const {
__TBB_ASSERT( hash_map_base::is_valid(my_node), "iterator uninitialized or at end of container?" );
return my_node->item;
}
Value* operator->() const {return &operator*();}
hash_map_iterator& operator++();
//! Post increment
hash_map_iterator operator++(int) {
hash_map_iterator old(*this);
operator++();
return old;
}
};
template<typename Container, typename Value>
hash_map_iterator<Container,Value>::hash_map_iterator( const Container &map, size_t index, const bucket *b, node_base *n ) :
my_map(&map),
my_index(index),
my_bucket(b),
my_node( static_cast<node*>(n) )
{
if( b && !hash_map_base::is_valid(n) )
advance_to_next_bucket();
}
template<typename Container, typename Value>
hash_map_iterator<Container,Value>& hash_map_iterator<Container,Value>::operator++() {
my_node = static_cast<node*>( my_node->next );
if( !my_node ) advance_to_next_bucket();
return *this;
}
template<typename Container, typename T, typename U>
bool operator==( const hash_map_iterator<Container,T>& i, const hash_map_iterator<Container,U>& j ) {
return i.my_node == j.my_node && i.my_map == j.my_map;
}
template<typename Container, typename T, typename U>
bool operator!=( const hash_map_iterator<Container,T>& i, const hash_map_iterator<Container,U>& j ) {
return i.my_node != j.my_node || i.my_map != j.my_map;
}
//! Range class used with concurrent_hash_map
/** @ingroup containers */
template<typename Iterator>
class hash_map_range {
typedef typename Iterator::map_type map_type;
Iterator my_begin;
Iterator my_end;
mutable Iterator my_midpoint;
size_t my_grainsize;
//! Set my_midpoint to point approximately half way between my_begin and my_end.
void set_midpoint() const;
template<typename U> friend class hash_map_range;
public:
//! Type for size of a range
typedef std::size_t size_type;
typedef typename Iterator::value_type value_type;
typedef typename Iterator::reference reference;
typedef typename Iterator::difference_type difference_type;
typedef Iterator iterator;
//! True if range is empty.
bool empty() const {return my_begin==my_end;}
//! True if range can be partitioned into two subranges.
bool is_divisible() const {
return my_midpoint!=my_end;
}
//! Split range.
hash_map_range( hash_map_range& r, split ) :
my_end(r.my_end),
my_grainsize(r.my_grainsize)
{
r.my_end = my_begin = r.my_midpoint;
__TBB_ASSERT( !empty(), "Splitting despite the range is not divisible" );
__TBB_ASSERT( !r.empty(), "Splitting despite the range is not divisible" );
set_midpoint();
r.set_midpoint();
}
//! type conversion
template<typename U>
hash_map_range( hash_map_range<U>& r) :
my_begin(r.my_begin),
my_end(r.my_end),
my_midpoint(r.my_midpoint),
my_grainsize(r.my_grainsize)
{}
#if TBB_DEPRECATED
//! Init range with iterators and grainsize specified
hash_map_range( const Iterator& begin_, const Iterator& end_, size_type grainsize_ = 1 ) :
my_begin(begin_),
my_end(end_),
my_grainsize(grainsize_)
{
if(!my_end.my_index && !my_end.my_bucket) // end
my_end.my_index = my_end.my_map->my_mask + 1;
set_midpoint();
__TBB_ASSERT( grainsize_>0, "grainsize must be positive" );
}
#endif
//! Init range with container and grainsize specified
hash_map_range( const map_type &map, size_type grainsize_ = 1 ) :
my_begin( Iterator( map, 0, map.my_embedded_segment, map.my_embedded_segment->node_list ) ),
my_end( Iterator( map, map.my_mask + 1, 0, 0 ) ),
my_grainsize( grainsize_ )
{
__TBB_ASSERT( grainsize_>0, "grainsize must be positive" );
set_midpoint();
}
const Iterator& begin() const {return my_begin;}
const Iterator& end() const {return my_end;}
//! The grain size for this range.
size_type grainsize() const {return my_grainsize;}
};
template<typename Iterator>
void hash_map_range<Iterator>::set_midpoint() const {
// Split by groups of nodes
size_t m = my_end.my_index-my_begin.my_index;
if( m > my_grainsize ) {
m = my_begin.my_index + m/2u;
hash_map_base::bucket *b = my_begin.my_map->get_bucket(m);
my_midpoint = Iterator(*my_begin.my_map,m,b,b->node_list);
} else {
my_midpoint = my_end;
}
__TBB_ASSERT( my_begin.my_index <= my_midpoint.my_index,
"my_begin is after my_midpoint" );
__TBB_ASSERT( my_midpoint.my_index <= my_end.my_index,
"my_midpoint is after my_end" );
__TBB_ASSERT( my_begin != my_midpoint || my_begin == my_end,
"[my_begin, my_midpoint) range should not be empty" );
}
} // internal
//! @endcond
//! Unordered map from Key to T.
/** concurrent_hash_map is associative container with concurrent access.
@par Compatibility
The class meets all Container Requirements from C++ Standard (See ISO/IEC 14882:2003(E), clause 23.1).
@par Exception Safety
- Hash function is not permitted to throw an exception. User-defined types Key and T are forbidden from throwing an exception in destructors.
- If exception happens during insert() operations, it has no effect (unless exception raised by HashCompare::hash() function during grow_segment).
- If exception happens during operator=() operation, the container can have a part of source items, and methods size() and empty() can return wrong results.
@par Changes since TBB 2.1
- Replaced internal algorithm and data structure. Patent is pending.
- Added buckets number argument for constructor
@par Changes since TBB 2.0
- Fixed exception-safety
- Added template argument for allocator
- Added allocator argument in constructors
- Added constructor from a range of iterators
- Added several new overloaded insert() methods
- Added get_allocator()
- Added swap()
- Added count()
- Added overloaded erase(accessor &) and erase(const_accessor&)
- Added equal_range() [const]
- Added [const_]pointer, [const_]reference, and allocator_type types
- Added global functions: operator==(), operator!=(), and swap()
@ingroup containers */
template<typename Key, typename T, typename HashCompare, typename Allocator>
class concurrent_hash_map : protected internal::hash_map_base {
template<typename Container, typename Value>
friend class internal::hash_map_iterator;
template<typename I>
friend class internal::hash_map_range;
public:
typedef Key key_type;
typedef T mapped_type;
typedef std::pair<const Key,T> value_type;
typedef hash_map_base::size_type size_type;
typedef ptrdiff_t difference_type;
typedef value_type *pointer;
typedef const value_type *const_pointer;
typedef value_type &reference;
typedef const value_type &const_reference;
typedef internal::hash_map_iterator<concurrent_hash_map,value_type> iterator;
typedef internal::hash_map_iterator<concurrent_hash_map,const value_type> const_iterator;
typedef internal::hash_map_range<iterator> range_type;
typedef internal::hash_map_range<const_iterator> const_range_type;
typedef Allocator allocator_type;
protected:
friend class const_accessor;
struct node;
typedef typename Allocator::template rebind<node>::other node_allocator_type;
node_allocator_type my_allocator;
HashCompare my_hash_compare;
struct node : public node_base {
value_type item;
node( const Key &key ) : item(key, T()) {}
node( const Key &key, const T &t ) : item(key, t) {}
// exception-safe allocation, see C++ Standard 2003, clause 5.3.4p17
void *operator new( size_t /*size*/, node_allocator_type &a ) {
void *ptr = a.allocate(1);
if(!ptr)
tbb::internal::throw_exception(tbb::internal::eid_bad_alloc);
return ptr;
}
// match placement-new form above to be called if exception thrown in constructor
void operator delete( void *ptr, node_allocator_type &a ) { a.deallocate(static_cast<node*>(ptr),1); }
};
void delete_node( node_base *n ) {
my_allocator.destroy( static_cast<node*>(n) );
my_allocator.deallocate( static_cast<node*>(n), 1);
}
node *search_bucket( const key_type &key, bucket *b ) const {
node *n = static_cast<node*>( b->node_list );
while( is_valid(n) && !my_hash_compare.equal(key, n->item.first) )
n = static_cast<node*>( n->next );
__TBB_ASSERT(n != internal::rehash_req, "Search can be executed only for rehashed bucket");
return n;
}
//! bucket accessor is to find, rehash, acquire a lock, and access a bucket
class bucket_accessor : public bucket::scoped_t {
bucket *my_b;
public:
bucket_accessor( concurrent_hash_map *base, const hashcode_t h, bool writer = false ) { acquire( base, h, writer ); }
//! find a bucket by masked hashcode, optionally rehash, and acquire the lock
inline void acquire( concurrent_hash_map *base, const hashcode_t h, bool writer = false ) {
my_b = base->get_bucket( h );
// TODO: actually, notification is unnecessary here, just hiding double-check
if( itt_load_word_with_acquire(my_b->node_list) == internal::rehash_req
&& try_acquire( my_b->mutex, /*write=*/true ) )
{
if( my_b->node_list == internal::rehash_req ) base->rehash_bucket( my_b, h ); //recursive rehashing
}
else bucket::scoped_t::acquire( my_b->mutex, writer );
__TBB_ASSERT( my_b->node_list != internal::rehash_req, NULL);
}
//! check whether bucket is locked for write
bool is_writer() { return bucket::scoped_t::is_writer; }
//! get bucket pointer
bucket *operator() () { return my_b; }
};
// TODO refactor to hash_base
void rehash_bucket( bucket *b_new, const hashcode_t h ) {
__TBB_ASSERT( *(intptr_t*)(&b_new->mutex), "b_new must be locked (for write)");
__TBB_ASSERT( h > 1, "The lowermost buckets can't be rehashed" );
__TBB_store_with_release(b_new->node_list, internal::empty_rehashed); // mark rehashed
hashcode_t mask = ( 1u<<__TBB_Log2( h ) ) - 1; // get parent mask from the topmost bit
#if __TBB_STATISTICS
my_info_rehashes++; // invocations of rehash_bucket
#endif
bucket_accessor b_old( this, h & mask );
mask = (mask<<1) | 1; // get full mask for new bucket
__TBB_ASSERT( (mask&(mask+1))==0 && (h & mask) == h, NULL );
restart:
for( node_base **p = &b_old()->node_list, *n = __TBB_load_with_acquire(*p); is_valid(n); n = *p ) {
hashcode_t c = my_hash_compare.hash( static_cast<node*>(n)->item.first );
#if TBB_USE_ASSERT
hashcode_t bmask = h & (mask>>1);
bmask = bmask==0? 1 : ( 1u<<(__TBB_Log2( bmask )+1 ) ) - 1; // minimal mask of parent bucket
__TBB_ASSERT( (c & bmask) == (h & bmask), "hash() function changed for key in table" );
#endif
if( (c & mask) == h ) {
if( !b_old.is_writer() )
if( !b_old.upgrade_to_writer() ) {
goto restart; // node ptr can be invalid due to concurrent erase
}
*p = n->next; // exclude from b_old
add_to_bucket( b_new, n );
} else p = &n->next; // iterate to next item
}
}
public:
class accessor;
//! Combines data access, locking, and garbage collection.
class const_accessor : private node::scoped_t /*which derived from no_copy*/ {
friend class concurrent_hash_map<Key,T,HashCompare,Allocator>;
friend class accessor;
public:
//! Type of value
typedef const typename concurrent_hash_map::value_type value_type;
//! True if result is empty.
bool empty() const {return !my_node;}
//! Set to null
void release() {
if( my_node ) {
node::scoped_t::release();
my_node = 0;
}
}
//! Return reference to associated value in hash table.
const_reference operator*() const {
__TBB_ASSERT( my_node, "attempt to dereference empty accessor" );
return my_node->item;
}
//! Return pointer to associated value in hash table.
const_pointer operator->() const {
return &operator*();
}
//! Create empty result
const_accessor() : my_node(NULL) {}
//! Destroy result after releasing the underlying reference.
~const_accessor() {
my_node = NULL; // scoped lock's release() is called in its destructor
}
protected:
bool is_writer() { return node::scoped_t::is_writer; }
node *my_node;
hashcode_t my_hash;
};
//! Allows write access to elements and combines data access, locking, and garbage collection.
class accessor: public const_accessor {
public:
//! Type of value
typedef typename concurrent_hash_map::value_type value_type;
//! Return reference to associated value in hash table.
reference operator*() const {
__TBB_ASSERT( this->my_node, "attempt to dereference empty accessor" );
return this->my_node->item;
}
//! Return pointer to associated value in hash table.
pointer operator->() const {
return &operator*();
}
};
//! Construct empty table.
concurrent_hash_map(const allocator_type &a = allocator_type())
: internal::hash_map_base(), my_allocator(a)
{}
//! Construct empty table with n preallocated buckets. This number serves also as initial concurrency level.
concurrent_hash_map(size_type n, const allocator_type &a = allocator_type())
: my_allocator(a)
{
reserve( n );
}
//! Copy constructor
concurrent_hash_map( const concurrent_hash_map& table, const allocator_type &a = allocator_type())
: internal::hash_map_base(), my_allocator(a)
{
internal_copy(table);
}
//! Construction with copying iteration range and given allocator instance
template<typename I>
concurrent_hash_map(I first, I last, const allocator_type &a = allocator_type())
: my_allocator(a)
{
reserve( std::distance(first, last) ); // TODO: load_factor?
internal_copy(first, last);
}
#if __TBB_INITIALIZER_LISTS_PRESENT
//! Construct empty table with n preallocated buckets. This number serves also as initial concurrency level.
concurrent_hash_map(const std::initializer_list<value_type> &il, const allocator_type &a = allocator_type())
: my_allocator(a)
{
reserve(il.size());
internal_copy(il.begin(), il.end());
}
#endif //__TBB_INITIALIZER_LISTS_PRESENT
//! Assignment
concurrent_hash_map& operator=( const concurrent_hash_map& table ) {
if( this!=&table ) {
clear();
internal_copy(table);
}
return *this;
}
#if __TBB_INITIALIZER_LISTS_PRESENT
//! Assignment
concurrent_hash_map& operator=( const std::initializer_list<value_type> &il ) {
clear();
reserve(il.size());
internal_copy(il.begin(), il.end());
return *this;
}
#endif //__TBB_INITIALIZER_LISTS_PRESENT
//! Rehashes and optionally resizes the whole table.
/** Useful to optimize performance before or after concurrent operations.
Also enables using of find() and count() concurrent methods in serial context. */
void rehash(size_type n = 0);
//! Clear table
void clear();
//! Clear table and destroy it.
~concurrent_hash_map() { clear(); }
//------------------------------------------------------------------------
// Parallel algorithm support
//------------------------------------------------------------------------
range_type range( size_type grainsize=1 ) {
return range_type( *this, grainsize );
}
const_range_type range( size_type grainsize=1 ) const {
return const_range_type( *this, grainsize );
}
//------------------------------------------------------------------------
// STL support - not thread-safe methods
//------------------------------------------------------------------------
iterator begin() {return iterator(*this,0,my_embedded_segment,my_embedded_segment->node_list);}
iterator end() {return iterator(*this,0,0,0);}
const_iterator begin() const {return const_iterator(*this,0,my_embedded_segment,my_embedded_segment->node_list);}
const_iterator end() const {return const_iterator(*this,0,0,0);}
std::pair<iterator, iterator> equal_range( const Key& key ) { return internal_equal_range(key, end()); }
std::pair<const_iterator, const_iterator> equal_range( const Key& key ) const { return internal_equal_range(key, end()); }
//! Number of items in table.
size_type size() const { return my_size; }
//! True if size()==0.
bool empty() const { return my_size == 0; }
//! Upper bound on size.
size_type max_size() const {return (~size_type(0))/sizeof(node);}
//! Returns the current number of buckets
size_type bucket_count() const { return my_mask+1; }
//! return allocator object
allocator_type get_allocator() const { return this->my_allocator; }
//! swap two instances. Iterators are invalidated
void swap(concurrent_hash_map &table);
//------------------------------------------------------------------------
// concurrent map operations
//------------------------------------------------------------------------
//! Return count of items (0 or 1)
size_type count( const Key &key ) const {
return const_cast<concurrent_hash_map*>(this)->lookup(/*insert*/false, key, NULL, NULL, /*write=*/false );
}
//! Find item and acquire a read lock on the item.
/** Return true if item is found, false otherwise. */
bool find( const_accessor &result, const Key &key ) const {
result.release();
return const_cast<concurrent_hash_map*>(this)->lookup(/*insert*/false, key, NULL, &result, /*write=*/false );
}
//! Find item and acquire a write lock on the item.
/** Return true if item is found, false otherwise. */
bool find( accessor &result, const Key &key ) {
result.release();
return lookup(/*insert*/false, key, NULL, &result, /*write=*/true );
}
//! Insert item (if not already present) and acquire a read lock on the item.
/** Returns true if item is new. */
bool insert( const_accessor &result, const Key &key ) {
result.release();
return lookup(/*insert*/true, key, NULL, &result, /*write=*/false );
}
//! Insert item (if not already present) and acquire a write lock on the item.
/** Returns true if item is new. */
bool insert( accessor &result, const Key &key ) {
result.release();
return lookup(/*insert*/true, key, NULL, &result, /*write=*/true );
}
//! Insert item by copying if there is no such key present already and acquire a read lock on the item.
/** Returns true if item is new. */
bool insert( const_accessor &result, const value_type &value ) {
result.release();
return lookup(/*insert*/true, value.first, &value.second, &result, /*write=*/false );
}
//! Insert item by copying if there is no such key present already and acquire a write lock on the item.
/** Returns true if item is new. */
bool insert( accessor &result, const value_type &value ) {
result.release();
return lookup(/*insert*/true, value.first, &value.second, &result, /*write=*/true );
}
//! Insert item by copying if there is no such key present already
/** Returns true if item is inserted. */
bool insert( const value_type &value ) {
return lookup(/*insert*/true, value.first, &value.second, NULL, /*write=*/false );
}
//! Insert range [first, last)
template<typename I>
void insert(I first, I last) {
for(; first != last; ++first)
insert( *first );
}
//! Erase item.
/** Return true if item was erased by particularly this call. */
bool erase( const Key& key );
//! Erase item by const_accessor.
/** Return true if item was erased by particularly this call. */
bool erase( const_accessor& item_accessor ) {
return exclude( item_accessor );
}
//! Erase item by accessor.
/** Return true if item was erased by particularly this call. */
bool erase( accessor& item_accessor ) {
return exclude( item_accessor );
}
protected:
//! Insert or find item and optionally acquire a lock on the item.
bool lookup( bool op_insert, const Key &key, const T *t, const_accessor *result, bool write );
//! delete item by accessor
bool exclude( const_accessor &item_accessor );
//! Returns an iterator for an item defined by the key, or for the next item after it (if upper==true)
template<typename I>
std::pair<I, I> internal_equal_range( const Key& key, I end ) const;
//! Copy "source" to *this, where *this must start out empty.
void internal_copy( const concurrent_hash_map& source );
template<typename I>
void internal_copy(I first, I last);
//! Fast find when no concurrent erasure is used. For internal use inside TBB only!
/** Return pointer to item with given key, or NULL if no such item exists.
Must not be called concurrently with erasure operations. */
const_pointer internal_fast_find( const Key& key ) const {
hashcode_t h = my_hash_compare.hash( key );
hashcode_t m = (hashcode_t) itt_load_word_with_acquire( my_mask );
node *n;
restart:
__TBB_ASSERT((m&(m+1))==0, NULL);
bucket *b = get_bucket( h & m );
// TODO: actually, notification is unnecessary here, just hiding double-check
if( itt_load_word_with_acquire(b->node_list) == internal::rehash_req )
{
bucket::scoped_t lock;
if( lock.try_acquire( b->mutex, /*write=*/true ) ) {
if( b->node_list == internal::rehash_req)
const_cast<concurrent_hash_map*>(this)->rehash_bucket( b, h & m ); //recursive rehashing
}
else lock.acquire( b->mutex, /*write=*/false );
__TBB_ASSERT(b->node_list!=internal::rehash_req,NULL);
}
n = search_bucket( key, b );
if( n )
return &n->item;
else if( check_mask_race( h, m ) )
goto restart;
return 0;
}
};
#if _MSC_VER && !defined(__INTEL_COMPILER)
// Suppress "conditional expression is constant" warning.
#pragma warning( push )
#pragma warning( disable: 4127 )
#endif
template<typename Key, typename T, typename HashCompare, typename A>
bool concurrent_hash_map<Key,T,HashCompare,A>::lookup( bool op_insert, const Key &key, const T *t, const_accessor *result, bool write ) {
__TBB_ASSERT( !result || !result->my_node, NULL );
bool return_value;
hashcode_t const h = my_hash_compare.hash( key );
hashcode_t m = (hashcode_t) itt_load_word_with_acquire( my_mask );
segment_index_t grow_segment = 0;
node *n, *tmp_n = 0;
restart:
{//lock scope
__TBB_ASSERT((m&(m+1))==0, NULL);
return_value = false;
// get bucket
bucket_accessor b( this, h & m );
// find a node
n = search_bucket( key, b() );
if( op_insert ) {
// [opt] insert a key
if( !n ) {
if( !tmp_n ) {
if(t) tmp_n = new( my_allocator ) node(key, *t);
else tmp_n = new( my_allocator ) node(key);
}
if( !b.is_writer() && !b.upgrade_to_writer() ) { // TODO: improved insertion
// Rerun search_list, in case another thread inserted the item during the upgrade.
n = search_bucket( key, b() );
if( is_valid(n) ) { // unfortunately, it did
b.downgrade_to_reader();
goto exists;
}
}
if( check_mask_race(h, m) )
goto restart; // b.release() is done in ~b().
// insert and set flag to grow the container
grow_segment = insert_new_node( b(), n = tmp_n, m );
tmp_n = 0;
return_value = true;
}
} else { // find or count
if( !n ) {
if( check_mask_race( h, m ) )
goto restart; // b.release() is done in ~b(). TODO: replace by continue
return false;
}
return_value = true;
}
exists:
if( !result ) goto check_growth;
// TODO: the following seems as generic/regular operation
// acquire the item
if( !result->try_acquire( n->mutex, write ) ) {
for( tbb::internal::atomic_backoff backoff(true);; ) {
if( result->try_acquire( n->mutex, write ) ) break;
if( !backoff.bounded_pause() ) {
// the wait takes really long, restart the operation
b.release();
__TBB_ASSERT( !op_insert || !return_value, "Can't acquire new item in locked bucket?" );
__TBB_Yield();
m = (hashcode_t) itt_load_word_with_acquire( my_mask );
goto restart;
}
}
}
}//lock scope
result->my_node = n;
result->my_hash = h;
check_growth:
// [opt] grow the container
if( grow_segment ) {
#if __TBB_STATISTICS
my_info_resizes++; // concurrent ones
#endif
enable_segment( grow_segment );
}
if( tmp_n ) // if op_insert only
delete_node( tmp_n );
return return_value;
}
template<typename Key, typename T, typename HashCompare, typename A>
template<typename I>
std::pair<I, I> concurrent_hash_map<Key,T,HashCompare,A>::internal_equal_range( const Key& key, I end_ ) const {
hashcode_t h = my_hash_compare.hash( key );
hashcode_t m = my_mask;
__TBB_ASSERT((m&(m+1))==0, NULL);
h &= m;
bucket *b = get_bucket( h );
while( b->node_list == internal::rehash_req ) {
m = ( 1u<<__TBB_Log2( h ) ) - 1; // get parent mask from the topmost bit
b = get_bucket( h &= m );
}
node *n = search_bucket( key, b );
if( !n )
return std::make_pair(end_, end_);
iterator lower(*this, h, b, n), upper(lower);
return std::make_pair(lower, ++upper);
}
template<typename Key, typename T, typename HashCompare, typename A>
bool concurrent_hash_map<Key,T,HashCompare,A>::exclude( const_accessor &item_accessor ) {
__TBB_ASSERT( item_accessor.my_node, NULL );
node_base *const n = item_accessor.my_node;
hashcode_t const h = item_accessor.my_hash;
hashcode_t m = (hashcode_t) itt_load_word_with_acquire( my_mask );
do {
// get bucket
bucket_accessor b( this, h & m, /*writer=*/true );
node_base **p = &b()->node_list;
while( *p && *p != n )
p = &(*p)->next;
if( !*p ) { // someone else was first
if( check_mask_race( h, m ) )
continue;
item_accessor.release();
return false;
}
__TBB_ASSERT( *p == n, NULL );
*p = n->next; // remove from container
my_size--;
break;
} while(true);
if( !item_accessor.is_writer() ) // need to get exclusive lock
item_accessor.upgrade_to_writer(); // return value means nothing here
item_accessor.release();
delete_node( n ); // Only one thread can delete it
return true;
}
template<typename Key, typename T, typename HashCompare, typename A>
bool concurrent_hash_map<Key,T,HashCompare,A>::erase( const Key &key ) {
node_base *n;
hashcode_t const h = my_hash_compare.hash( key );
hashcode_t m = (hashcode_t) itt_load_word_with_acquire( my_mask );
restart:
{//lock scope
// get bucket
bucket_accessor b( this, h & m );
search:
node_base **p = &b()->node_list;
n = *p;
while( is_valid(n) && !my_hash_compare.equal(key, static_cast<node*>(n)->item.first ) ) {
p = &n->next;
n = *p;
}
if( !n ) { // not found, but mask could be changed
if( check_mask_race( h, m ) )
goto restart;
return false;
}
else if( !b.is_writer() && !b.upgrade_to_writer() ) {
if( check_mask_race( h, m ) ) // contended upgrade, check mask
goto restart;
goto search;
}
*p = n->next;
my_size--;
}
{
typename node::scoped_t item_locker( n->mutex, /*write=*/true );
}
// note: there should be no threads pretending to acquire this mutex again, do not try to upgrade const_accessor!
delete_node( n ); // Only one thread can delete it due to write lock on the bucket
return true;
}
template<typename Key, typename T, typename HashCompare, typename A>
void concurrent_hash_map<Key,T,HashCompare,A>::swap(concurrent_hash_map<Key,T,HashCompare,A> &table) {
std::swap(this->my_allocator, table.my_allocator);
std::swap(this->my_hash_compare, table.my_hash_compare);
internal_swap(table);
}
template<typename Key, typename T, typename HashCompare, typename A>
void concurrent_hash_map<Key,T,HashCompare,A>::rehash(size_type sz) {
reserve( sz ); // TODO: add reduction of number of buckets as well
hashcode_t mask = my_mask;
hashcode_t b = (mask+1)>>1; // size or first index of the last segment
__TBB_ASSERT((b&(b-1))==0, NULL); // zero or power of 2
bucket *bp = get_bucket( b ); // only the last segment should be scanned for rehashing
for(; b <= mask; b++, bp++ ) {
node_base *n = bp->node_list;
__TBB_ASSERT( is_valid(n) || n == internal::empty_rehashed || n == internal::rehash_req, "Broken internal structure" );
__TBB_ASSERT( *reinterpret_cast<intptr_t*>(&bp->mutex) == 0, "concurrent or unexpectedly terminated operation during rehash() execution" );
if( n == internal::rehash_req ) { // rehash bucket, conditional because rehashing of a previous bucket may affect this one
hashcode_t h = b; bucket *b_old = bp;
do {
__TBB_ASSERT( h > 1, "The lowermost buckets can't be rehashed" );
hashcode_t m = ( 1u<<__TBB_Log2( h ) ) - 1; // get parent mask from the topmost bit
b_old = get_bucket( h &= m );
} while( b_old->node_list == internal::rehash_req );
// now h - is index of the root rehashed bucket b_old
mark_rehashed_levels( h ); // mark all non-rehashed children recursively across all segments
for( node_base **p = &b_old->node_list, *q = *p; is_valid(q); q = *p ) {
hashcode_t c = my_hash_compare.hash( static_cast<node*>(q)->item.first );
if( (c & mask) != h ) { // should be rehashed
*p = q->next; // exclude from b_old
bucket *b_new = get_bucket( c & mask );
__TBB_ASSERT( b_new->node_list != internal::rehash_req, "hash() function changed for key in table or internal error" );
add_to_bucket( b_new, q );
} else p = &q->next; // iterate to next item
}
}
}
#if TBB_USE_PERFORMANCE_WARNINGS
int current_size = int(my_size), buckets = int(mask)+1, empty_buckets = 0, overpopulated_buckets = 0; // usage statistics
static bool reported = false;
#endif
#if TBB_USE_ASSERT || TBB_USE_PERFORMANCE_WARNINGS
for( b = 0; b <= mask; b++ ) {// only last segment should be scanned for rehashing
if( b & (b-2) ) ++bp; // not the beginning of a segment
else bp = get_bucket( b );
node_base *n = bp->node_list;
__TBB_ASSERT( *reinterpret_cast<intptr_t*>(&bp->mutex) == 0, "concurrent or unexpectedly terminated operation during rehash() execution" );
__TBB_ASSERT( is_valid(n) || n == internal::empty_rehashed, "Broken internal structure" );
#if TBB_USE_PERFORMANCE_WARNINGS
if( n == internal::empty_rehashed ) empty_buckets++;
else if( n->next ) overpopulated_buckets++;
#endif
#if TBB_USE_ASSERT
for( ; is_valid(n); n = n->next ) {
hashcode_t h = my_hash_compare.hash( static_cast<node*>(n)->item.first ) & mask;
__TBB_ASSERT( h == b, "hash() function changed for key in table or internal error" );
}
#endif
}
#endif // TBB_USE_ASSERT || TBB_USE_PERFORMANCE_WARNINGS
#if TBB_USE_PERFORMANCE_WARNINGS
if( buckets > current_size) empty_buckets -= buckets - current_size;
else overpopulated_buckets -= current_size - buckets; // TODO: load_factor?
if( !reported && buckets >= 512 && ( 2*empty_buckets > current_size || 2*overpopulated_buckets > current_size ) ) {
tbb::internal::runtime_warning(
"Performance is not optimal because the hash function produces bad randomness in lower bits in %s.\nSize: %d Empties: %d Overlaps: %d",
typeid(*this).name(), current_size, empty_buckets, overpopulated_buckets );
reported = true;
}
#endif
}
template<typename Key, typename T, typename HashCompare, typename A>
void concurrent_hash_map<Key,T,HashCompare,A>::clear() {
hashcode_t m = my_mask;
__TBB_ASSERT((m&(m+1))==0, NULL);
#if TBB_USE_ASSERT || TBB_USE_PERFORMANCE_WARNINGS || __TBB_STATISTICS
#if TBB_USE_PERFORMANCE_WARNINGS || __TBB_STATISTICS
int current_size = int(my_size), buckets = int(m)+1, empty_buckets = 0, overpopulated_buckets = 0; // usage statistics
static bool reported = false;
#endif
bucket *bp = 0;
// check consistency
for( segment_index_t b = 0; b <= m; b++ ) {
if( b & (b-2) ) ++bp; // not the beginning of a segment
else bp = get_bucket( b );
node_base *n = bp->node_list;
__TBB_ASSERT( is_valid(n) || n == internal::empty_rehashed || n == internal::rehash_req, "Broken internal structure" );
__TBB_ASSERT( *reinterpret_cast<intptr_t*>(&bp->mutex) == 0, "concurrent or unexpectedly terminated operation during clear() execution" );
#if TBB_USE_PERFORMANCE_WARNINGS || __TBB_STATISTICS
if( n == internal::empty_rehashed ) empty_buckets++;
else if( n == internal::rehash_req ) buckets--;
else if( n->next ) overpopulated_buckets++;
#endif
#if __TBB_EXTRA_DEBUG
for(; is_valid(n); n = n->next ) {
hashcode_t h = my_hash_compare.hash( static_cast<node*>(n)->item.first );
h &= m;
__TBB_ASSERT( h == b || get_bucket(h)->node_list == internal::rehash_req, "hash() function changed for key in table or internal error" );
}
#endif
}
#if TBB_USE_PERFORMANCE_WARNINGS || __TBB_STATISTICS
#if __TBB_STATISTICS
printf( "items=%d buckets: capacity=%d rehashed=%d empty=%d overpopulated=%d"
" concurrent: resizes=%u rehashes=%u restarts=%u\n",
current_size, int(m+1), buckets, empty_buckets, overpopulated_buckets,
unsigned(my_info_resizes), unsigned(my_info_rehashes), unsigned(my_info_restarts) );
my_info_resizes = 0; // concurrent ones
my_info_restarts = 0; // race collisions
my_info_rehashes = 0; // invocations of rehash_bucket
#endif
if( buckets > current_size) empty_buckets -= buckets - current_size;
else overpopulated_buckets -= current_size - buckets; // TODO: load_factor?
if( !reported && buckets >= 512 && ( 2*empty_buckets > current_size || 2*overpopulated_buckets > current_size ) ) {
tbb::internal::runtime_warning(
"Performance is not optimal because the hash function produces bad randomness in lower bits in %s.\nSize: %d Empties: %d Overlaps: %d",
typeid(*this).name(), current_size, empty_buckets, overpopulated_buckets );
reported = true;
}
#endif
#endif//TBB_USE_ASSERT || TBB_USE_PERFORMANCE_WARNINGS || __TBB_STATISTICS
my_size = 0;
segment_index_t s = segment_index_of( m );
__TBB_ASSERT( s+1 == pointers_per_table || !my_table[s+1], "wrong mask or concurrent grow" );
cache_aligned_allocator<bucket> alloc;
do {
__TBB_ASSERT( is_valid( my_table[s] ), "wrong mask or concurrent grow" );
segment_ptr_t buckets_ptr = my_table[s];
size_type sz = segment_size( s ? s : 1 );
for( segment_index_t i = 0; i < sz; i++ )
for( node_base *n = buckets_ptr[i].node_list; is_valid(n); n = buckets_ptr[i].node_list ) {
buckets_ptr[i].node_list = n->next;
delete_node( n );
}
if( s >= first_block) // the first segment or the next
alloc.deallocate( buckets_ptr, sz );
else if( s == embedded_block && embedded_block != first_block )
alloc.deallocate( buckets_ptr, segment_size(first_block)-embedded_buckets );
if( s >= embedded_block ) my_table[s] = 0;
} while(s-- > 0);
my_mask = embedded_buckets - 1;
}
template<typename Key, typename T, typename HashCompare, typename A>
void concurrent_hash_map<Key,T,HashCompare,A>::internal_copy( const concurrent_hash_map& source ) {
reserve( source.my_size ); // TODO: load_factor?
hashcode_t mask = source.my_mask;
if( my_mask == mask ) { // optimized version
bucket *dst = 0, *src = 0;
bool rehash_required = false;
for( hashcode_t k = 0; k <= mask; k++ ) {
if( k & (k-2) ) ++dst,src++; // not the beginning of a segment
else { dst = get_bucket( k ); src = source.get_bucket( k ); }
__TBB_ASSERT( dst->node_list != internal::rehash_req, "Invalid bucket in destination table");
node *n = static_cast<node*>( src->node_list );
if( n == internal::rehash_req ) { // source is not rehashed, items are in previous buckets
rehash_required = true;
dst->node_list = internal::rehash_req;
} else for(; n; n = static_cast<node*>( n->next ) ) {
add_to_bucket( dst, new( my_allocator ) node(n->item.first, n->item.second) );
++my_size; // TODO: replace by non-atomic op
}
}
if( rehash_required ) rehash();
} else internal_copy( source.begin(), source.end() );
}
template<typename Key, typename T, typename HashCompare, typename A>
template<typename I>
void concurrent_hash_map<Key,T,HashCompare,A>::internal_copy(I first, I last) {
hashcode_t m = my_mask;
for(; first != last; ++first) {
hashcode_t h = my_hash_compare.hash( first->first );
bucket *b = get_bucket( h & m );
__TBB_ASSERT( b->node_list != internal::rehash_req, "Invalid bucket in destination table");
node *n = new( my_allocator ) node(first->first, first->second);
add_to_bucket( b, n );
++my_size; // TODO: replace by non-atomic op
}
}
} // namespace interface5
using interface5::concurrent_hash_map;
template<typename Key, typename T, typename HashCompare, typename A1, typename A2>
inline bool operator==(const concurrent_hash_map<Key, T, HashCompare, A1> &a, const concurrent_hash_map<Key, T, HashCompare, A2> &b) {
if(a.size() != b.size()) return false;
typename concurrent_hash_map<Key, T, HashCompare, A1>::const_iterator i(a.begin()), i_end(a.end());
typename concurrent_hash_map<Key, T, HashCompare, A2>::const_iterator j, j_end(b.end());
for(; i != i_end; ++i) {
j = b.equal_range(i->first).first;
if( j == j_end || !(i->second == j->second) ) return false;
}
return true;
}
template<typename Key, typename T, typename HashCompare, typename A1, typename A2>
inline bool operator!=(const concurrent_hash_map<Key, T, HashCompare, A1> &a, const concurrent_hash_map<Key, T, HashCompare, A2> &b)
{ return !(a == b); }
template<typename Key, typename T, typename HashCompare, typename A>
inline void swap(concurrent_hash_map<Key, T, HashCompare, A> &a, concurrent_hash_map<Key, T, HashCompare, A> &b)
{ a.swap( b ); }
#if _MSC_VER && !defined(__INTEL_COMPILER)
#pragma warning( pop )
#endif // warning 4127 is back
} // namespace tbb
#endif /* __TBB_concurrent_hash_map_H */
|