/usr/include/sofa/component/linearsolver/CGLinearSolver.h is in libsofa1-dev 1.0~beta4-8build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | /******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#ifndef SOFA_COMPONENT_LINEARSOLVER_CGLINEARSOLVER_H
#define SOFA_COMPONENT_LINEARSOLVER_CGLINEARSOLVER_H
#include <sofa/core/componentmodel/behavior/LinearSolver.h>
#include <sofa/component/linearsolver/MatrixLinearSolver.h>
#include <sofa/simulation/common/MechanicalVisitor.h>
#include <sofa/helper/map.h>
#include <math.h>
namespace sofa
{
namespace component
{
namespace linearsolver
{
//#define DISPLAY_TIME
#ifdef DISPLAY_TIME
#include <sofa/helper/system/thread/CTime.h>
using sofa::helper::system::thread::CTime;
#endif
/// Linear system solver using the conjugate gradient iterative algorithm
template<class TMatrix, class TVector>
class SOFA_COMPONENT_LINEARSOLVER_API CGLinearSolver : public sofa::component::linearsolver::MatrixLinearSolver<TMatrix,TVector>, public virtual sofa::core::objectmodel::BaseObject
{
public:
typedef TMatrix Matrix;
typedef TVector Vector;
typedef sofa::component::linearsolver::MatrixLinearSolver<TMatrix,TVector> Inherit;
Data<unsigned> f_maxIter;
Data<double> f_tolerance;
Data<double> f_smallDenominatorThreshold;
Data<bool> f_verbose;
Data<std::map < std::string, sofa::helper::vector<double> > > f_graph;
#ifdef DISPLAY_TIME
double time1;
double time2;
double timeStamp;
#endif
CGLinearSolver()
: f_maxIter( initData(&f_maxIter,(unsigned)25,"iterations","maximum number of iterations of the Conjugate Gradient solution") )
, f_tolerance( initData(&f_tolerance,1e-5,"tolerance","desired precision of the Conjugate Gradient Solution (ratio of current residual norm over initial residual norm)") )
, f_smallDenominatorThreshold( initData(&f_smallDenominatorThreshold,1e-5,"threshold","minimum value of the denominator in the conjugate Gradient solution") )
, f_verbose( initData(&f_verbose,false,"verbose","Dump system state at each iteration") )
, f_graph( initData(&f_graph,"graph","Graph of residuals at each iteration") )
{
f_graph.setWidget("graph");
f_graph.setReadOnly(true);
#ifdef DISPLAY_TIME
timeStamp = 1.0 / (double)CTime::getRefTicksPerSec();
#endif
}
protected:
/// This method is separated from the rest to be able to use custom/optimized versions depending on the types of vectors.
/// It computes: p = p*beta + r
inline void cgstep_beta(Vector& p, Vector& r, double beta);
/// This method is separated from the rest to be able to use custom/optimized versions depending on the types of vectors.
/// It computes: x += p*alpha, r -= q*alpha
inline void cgstep_alpha(Vector& x, Vector& r, Vector& p, Vector& q, double alpha);
public:
/// Solve Mx=b
void solve (Matrix& M, Vector& x, Vector& b)
{
Vector& p = *this->createVector();
Vector& q = *this->createVector();
Vector& r = *this->createVector();
const bool printLog = f_printLog.getValue();
const bool verbose = f_verbose.getValue();
// -- solve the system using a conjugate gradient solution
double rho, rho_1=0, alpha, beta;
if( verbose )
serr<<"CGLinearSolver, b = "<< b <<sendl;
x.clear();
r = b; // initial residual
double normb2 = b.dot(b);
double normb = sqrt(normb2);
std::map < std::string, sofa::helper::vector<double> >& graph = *f_graph.beginEdit();
sofa::helper::vector<double>& graph_error = graph["Error"];
graph_error.clear();
sofa::helper::vector<double>& graph_den = graph["Denominator"];
graph_den.clear();
graph_error.push_back(1);
unsigned nb_iter;
const char* endcond = "iterations";
#ifdef DISPLAY_TIME
CTime * timer;
time1 = (double) timer->getTime();
#endif
for( nb_iter=1; nb_iter<=f_maxIter.getValue(); nb_iter++ )
{
#ifdef DUMP_VISITOR_INFO
std::ostringstream comment;
comment << "Iteration : " << nb_iter;
simulation::Visitor::printComment(comment.str());
#endif
// printWithElapsedTime( x, helper::system::thread::CTime::getTime()-time0,sout );
//z = r; // no precond
//rho = r.dot(z);
rho = (nb_iter==1) ? normb2 : r.dot(r);
if (nb_iter>1)
{
double normr = sqrt(rho); //sqrt(r.dot(r));
double err = normr/normb;
graph_error.push_back(err);
if (err <= f_tolerance.getValue())
{
endcond = "tolerance";
break;
}
}
if( nb_iter==1 )
p = r; //z;
else
{
beta = rho / rho_1;
//p = p*beta + r; //z;
cgstep_beta(p,r,beta);
}
if( verbose )
{
serr<<"p : "<<p<<sendl;
}
// matrix-vector product
q = M*p;
if( verbose )
{
serr<<"q = M p : "<<q<<sendl;
}
double den = p.dot(q);
graph_den.push_back(den);
if( fabs(den)<f_smallDenominatorThreshold.getValue() )
{
endcond = "threshold";
if( verbose )
{
serr<<"CGLinearSolver, den = "<<den<<", smallDenominatorThreshold = "<<f_smallDenominatorThreshold.getValue()<<sendl;
}
break;
}
alpha = rho/den;
//x.peq(p,alpha); // x = x + alpha p
//r.peq(q,-alpha); // r = r - alpha q
cgstep_alpha(x,r,p,q,alpha);
if( verbose ){
serr<<"den = "<<den<<", alpha = "<<alpha<<sendl;
serr<<"x : "<<x<<sendl;
serr<<"r : "<<r<<sendl;
}
rho_1 = rho;
}
#ifdef DISPLAY_TIME
time1 = (double)(((double) timer->getTime() - time1) * timeStamp / (nb_iter-1));
#endif
f_graph.endEdit();
// x is the solution of the system
if( printLog )
{
#ifdef DISPLAY_TIME
cerr<<"CGLinearSolver::solve, CG = "<<time1<<" bluid = "<<time2<<endl;
#endif
serr<<"CGLinearSolver::solve, nbiter = "<<nb_iter<<" stop because of "<<endcond<<sendl;
}
if( verbose )
{
serr<<"CGLinearSolver::solve, solution = "<<x<<sendl;
}
this->deleteVector(&p);
this->deleteVector(&q);
this->deleteVector(&r);
}
#ifdef DISPLAY_TIME
void setSystemMBKMatrix(double mFact, double bFact, double kFact) {
CTime * timer;
time2 = (double) timer->getTime();
Inherit::setSystemMBKMatrix(mFact,bFact,kFact);
time2 = ((double) timer->getTime() - time2) * timeStamp;
}
#endif
};
template<class TMatrix, class TVector>
inline void CGLinearSolver<TMatrix,TVector>::cgstep_beta(Vector& p, Vector& r, double beta)
{
p *= beta;
p += r; //z;
}
template<class TMatrix, class TVector>
inline void CGLinearSolver<TMatrix,TVector>::cgstep_alpha(Vector& x, Vector& r, Vector& p, Vector& q, double alpha)
{
x.peq(p,alpha); // x = x + alpha p
r.peq(q,-alpha); // r = r - alpha q
}
template<>
inline void CGLinearSolver<component::linearsolver::GraphScatteredMatrix,component::linearsolver::GraphScatteredVector>::cgstep_beta(Vector& p, Vector& r, double beta)
{
this->v_op(p,r,p,beta); // p = p*beta + r
}
template<>
inline void CGLinearSolver<component::linearsolver::GraphScatteredMatrix,component::linearsolver::GraphScatteredVector>::cgstep_alpha(Vector& x, Vector& r, Vector& p, Vector& q, double alpha)
{
#if 1 //SOFA_NO_VMULTIOP // unoptimized version
x.peq(p,alpha); // x = x + alpha p
r.peq(q,-alpha); // r = r - alpha q
#else // single-operation optimization
typedef core::componentmodel::behavior::BaseMechanicalState::VMultiOp VMultiOp;
VMultiOp ops;
ops.resize(2);
ops[0].first = (VecId)x;
ops[0].second.push_back(std::make_pair((VecId)x,1.0));
ops[0].second.push_back(std::make_pair((VecId)p,alpha));
ops[1].first = (VecId)r;
ops[1].second.push_back(std::make_pair((VecId)r,1.0));
ops[1].second.push_back(std::make_pair((VecId)q,-alpha));
simulation::tree::MechanicalVMultiOpVisitor vmop(ops);
vmop.execute(this->getContext());
#endif
}
} // namespace linearsolver
} // namespace component
} // namespace sofa
#endif
|