/usr/include/shogun/structure/TwoStateModel.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2012 Fernando José Iglesias García
* Copyright (C) 2012 Fernando José Iglesias García
*/
#ifndef __TWO_STATE_MODEL_H__
#define __TWO_STATE_MODEL_H__
#include <shogun/structure/StateModel.h>
#include <shogun/structure/HMSVMModel.h>
namespace shogun
{
/**
* @brief class CTwoStateModel class for the internal two-state representation
* used in the CHMSVMModel.
*/
class CTwoStateModel : public CStateModel
{
public:
/** default constructor */
CTwoStateModel();
/** destructor */
virtual ~CTwoStateModel();
/**
* computes a loss matrix with m_num_states rows and number of columns
* equal to the length of label_seq. This matrix can be added directly
* to the emission matrix used in Viterbi decoding during training to
* form the loss-augmented emission matrix
*
* @param label_seq label sequence (normally the true label sequence)
*
* @return the loss matrix
*/
virtual SGMatrix< float64_t > loss_matrix(CSequence* label_seq);
/**
* computes the loss between two sequences of labels using the Hamming loss
* and the state loss matrix
*
* @param label_seq_lhs one label sequence
* @param label_seq_rhs other label sequence
*
* @return the Hamming loss
*/
virtual float64_t loss(CSequence* label_seq_lhs, CSequence* label_seq_rhs);
/**
* arranges the emission parameterss of the weight vector into a vector
* adding zero elements for the states whose parameters are not learnt.
* This vector is suitable to iterate through when constructing the
* emission matrix used in Viterbi decoding
*
* @param emission_weights emission parameters outputted
* @param w the weight vector
* @param num_feats number of features
* @param num_obs number of emission scores per feature and state
*/
virtual void reshape_emission_params(SGVector< float64_t >& emission_weights,
SGVector< float64_t > w, int32_t num_feats, int32_t num_obs);
/**
* arranges the emission parameters of the weight vector into a matrix
* of PLiFs adding zero elements for the states whose parameters are not
* learnt.
*
* @param plif_matrix matrix of PLiFs outputted
* @param w the weight vector
* @param num_feats number of features
* @param num_plif_nodes number of nodes in the PLiFs
*/
virtual void reshape_emission_params(CDynamicObjectArray* plif_matrix,
SGVector< float64_t > w, int32_t num_feats, int32_t num_plif_nodes);
/**
* arranges the transmission parameters of the weight vector into a matrix
* adding zero elements for the states whose parameters are not learnt.
* This matrix is suitable to iterate during Viterbi decoding
*
* @param transmission_weights transmission parameters outputted
* @param w the weight vector
*/
virtual void reshape_transmission_params(
SGMatrix< float64_t >& transmission_weights,
SGVector< float64_t > w);
/** translates label sequence to state sequence
*
* @param label_seq label sequence
*
* @return state sequence
*/
virtual SGVector< int32_t > labels_to_states(CSequence* label_seq) const;
/** translates state sequence to label sequence
*
* @param state_seq state sequence
*
* @return label sequence
*/
virtual CSequence* states_to_labels(SGVector< int32_t > state_seq) const;
/**
* reshapes the transition and emission weights into a vector (the joint
* feature vector so it will be possible to take the dot product with the
* weight vector). Version with the joint feature vector as parameter by
* reference
*
* @param psi output vector
* @param transmission_weights counts of the state transitions for a state sequence
* @param emission_weights counts of the emission scores for a state sequence and a feature vector
* @param num_feats number of features
* @param num_obs number of emission scores per feature and state
*/
virtual void weights_to_vector(SGVector< float64_t >& psi,
SGMatrix< float64_t > transmission_weights,
SGVector< float64_t > emission_weights,
int32_t num_feats, int32_t num_obs) const;
/**
* reshapes the transition and emission weights into a vector (the joint
* feature vector so it will be possible to take the dot product with the
* weight vector). Version returning the joint feature vector
*
* @param transmission_weights counts of the state transitions for a state sequence
* @param emission_weights counts of the emission scores for a state sequence and a feature vector
* @param num_feats number of features
* @param num_obs number of emission scores per feature and state
*
* @return psi output vector
*/
virtual SGVector< float64_t > weights_to_vector(SGMatrix< float64_t > transmission_weights,
SGVector< float64_t > emission_weights, int32_t num_feats, int32_t num_obs) const;
/**
* specify monotonicity constraints for feature scoring functions. The
* elements of the vector returned can take one of three values:
*
* see CStateModel::get_monotonicity
*
* @param num_free_states number of states whose parameters are learnt
* @param num_feats number of features
*
* @return vector with monotonicity constraints of length num_feats times
* num_learnt_states
*/
virtual SGVector< int32_t > get_monotonicity(int32_t num_free_states,
int32_t num_feats) const;
/**
* generates simulated data. The features are generated from the label
* sequence swapping some of the labels and adding noise
*
* @param num_exm number of sample pairs (sequence of features, sequence of labels) to generate
* @param exm_len length of each sample sequence
* @param num_features features dimension
* @param num_noise_features number of features to be pure noise
*
* @return a model that contains the data simulated
*/
static CHMSVMModel* simulate_data(int32_t num_exm, int32_t exm_len, int32_t num_features, int32_t num_noise_features);
/** @return name of SGSerializable */
virtual const char* get_name() const { return "TwoStateModel"; }
};
} /* namespace shogun */
#endif /* __TWO_STATE_MODEL_H__ */
|