/usr/include/shogun/structure/SOSVMHelper.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Shell Hu
* Copyright (C) 2013 Shell Hu
*/
#ifndef __SOSVM_HELPER_H__
#define __SOSVM_HELPER_H__
#include <shogun/base/SGObject.h>
#include <shogun/lib/SGVector.h>
#include <shogun/structure/StructuredModel.h>
namespace shogun
{
/** @brief class CSOSVMHelper contains helper functions to compute primal objectives,
* dual objectives, average training losses, duality gaps etc. These values will be
* recorded to check convergence. This class is inspired by the matlab implementation
* of the block coordinate Frank-Wolfe SOSVM solver [1].
*
* [1] S. Lacoste-Julien, M. Jaggi, M. Schmidt and P. Pletscher. Block-Coordinate
* Frank-Wolfe Optimization for Structural SVMs. ICML 2013.
*/
class CSOSVMHelper : public CSGObject
{
public:
/** constructor */
CSOSVMHelper();
/** constructor
*
* @param bufsize size of buffer (default: 1000)
*/
CSOSVMHelper(int32_t bufsize);
/** destructor */
virtual ~CSOSVMHelper();
/** @return name of SGSerializable */
virtual const char* get_name() const { return "SOSVMHelper"; }
/** Computes the primal SVM objective value
* \f$ \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_i \max_y (L_i(y) - w^T\Psi_i(y)) \f$
*
* @param w parameter vector, may be different from model.w
* @param model structured model
* @param lbda regularization parameter lambda
* @return primal objective value
*/
static float64_t primal_objective(SGVector<float64_t> w, CStructuredModel* model, float64_t lbda);
/** Computes the dual SVM objective value
* \f$ \frac{\lambda}{2} \|A\alpha\|^2 - b^T*\alpha \f$
*
* @param w is \f$ A\alpha \f$, \f$ A = \frac{1}{\lambda \cdot n}[\cdots,
* \psi_i(y), \cdots]_{d \times \sum_i |Y_i|} \f$
* @param b_alpha is \f$ b^T\alpha, b = \frac{1}{n}L_i(y) \f$, alpha are dual variables
* @param lbda regularization parameter lambda
* @return dual objective value
*/
static float64_t dual_objective(SGVector<float64_t> w, float64_t b_alpha, float64_t lbda);
/** Return the average loss for the predictions
*
* @param w parameter vector, may be different from model.w
* @param model structured model
* @return average loss
*/
static float64_t average_loss(SGVector<float64_t> w, CStructuredModel* model);
/** add debug information
*
* @param primal primal objective value
* @param eff_pass effective pass
* @param train_error training error
* @param dual dual objective value
* @param dgap duality gap
*/
virtual void add_debug_info(float64_t primal, float64_t eff_pass, float64_t train_error,
float64_t dual = -1, float64_t dgap = -1);
/** get primal objectives
*
* @return primal objectives
*/
SGVector<float64_t> get_primal_values() const;
/** get dual objectives
*
* @return dual objectives
*/
SGVector<float64_t> get_dual_values() const;
/** get duality gaps
*
* @return duality gaps
*/
SGVector<float64_t> get_duality_gaps() const;
/** get effective passes
*
* @return effective passes
*/
SGVector<float64_t> get_eff_passes() const;
/** get training errors
*
* @return training errors
*/
SGVector<float64_t> get_train_errors() const;
/** terminate logging and resize vectors
*/
void terminate();
private:
/** init parameters */
void init();
private:
/** history of primal value */
SGVector<float64_t> m_primal;
/** history of dual value */
SGVector<float64_t> m_dual;
/** history of duality gap */
SGVector<float64_t> m_duality_gap;
/** number of effective passes of data */
SGVector<float64_t> m_eff_pass;
/** history of training error */
SGVector<float64_t> m_train_error;
/** tracker of training progress */
int32_t m_tracker;
/** buffer size */
int32_t m_bufsize;
}; /* CSOSVMHelper */
} /* namespace shogun */
#endif
|