/usr/include/shogun/structure/MulticlassModel.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Thoralf Klein
* Written (W) 2012 Fernando José Iglesias García
* Copyright (C) 2012 Fernando José Iglesias García
*/
#ifndef _MULTICLASS_MODEL__H__
#define _MULTICLASS_MODEL__H__
#include <shogun/structure/StructuredModel.h>
namespace shogun
{
/**
* @brief Class CMulticlassModel that represents the application specific model
* and contains the application dependent logic to solve multiclass
* classification within a generic SO framework.
*/
class CMulticlassModel : public CStructuredModel
{
public:
/** default constructor */
CMulticlassModel();
/** constructor
*
* @param features
* @param labels
*/
CMulticlassModel(CFeatures* features, CStructuredLabels* labels);
/** destructor */
virtual ~CMulticlassModel();
/** create empty StructuredLabels object */
virtual CStructuredLabels* structured_labels_factory(int32_t num_labels=0);
/**
* return the dimensionality of the joint feature space, i.e.
* the dimension of the weight vector \f$w\f$
*/
virtual int32_t get_dim() const;
/**
* get joint feature vector
*
* \f[
* \vec{\Psi}(\bf{x}_\text{feat\_idx}, \bf{y})
* \f]
*
* @param feat_idx index of the feature vector to use
* @param y structured label to use
*
* @return the joint feature vector
*/
virtual SGVector< float64_t > get_joint_feature_vector(int32_t feat_idx, CStructuredData* y);
/**
* obtains the argmax of \f$ \Delta(y_{pred}, y_{truth}) +
* \langle w, \Psi(x_{truth}, y_{pred}) \rangle \f$
*
* @param w weight vector
* @param feat_idx index of the feature to compute the argmax
* @param training true if argmax is called during training.
* Then, it is assumed that the label indexed by feat_idx in
* m_labels corresponds to the true label of the corresponding
* feature vector.
*
* @return structure with the predicted output
*/
virtual CResultSet* argmax(SGVector< float64_t > w, int32_t feat_idx, bool const training = true);
/** computes \f$ \Delta(y_{1}, y_{2}) \f$
*
* @param y1 an instance of structured data
* @param y2 another instance of structured data
*
* @return loss value
*/
virtual float64_t delta_loss(CStructuredData* y1, CStructuredData* y2);
/** initialize the optimization problem
*
* @param regularization regularization strength
* @param A is [-dPsi(y) | -I_N ] with M+N columns => max. M+1 nnz per row
* @param a
* @param B
* @param b rhs of the equality constraints
* @param b upper bounds of the constraints, Ax <= b
* @param lb lower bound for the weight vector
* @param ub upper bound for the weight vector
* @param C regularization matrix, w'Cw
*/
virtual void init_primal_opt(
float64_t regularization,
SGMatrix< float64_t > & A, SGVector< float64_t > a,
SGMatrix< float64_t > B, SGVector< float64_t > & b,
SGVector< float64_t > lb, SGVector< float64_t > ub,
SGMatrix < float64_t > & C);
/** @return name of SGSerializable */
virtual const char* get_name() const { return "MulticlassModel"; }
private:
void init();
/** Different flavours of the delta_loss that become handy */
float64_t delta_loss(float64_t y1, float64_t y2);
float64_t delta_loss(int32_t y1_idx, float64_t y2);
private:
/** number of classes */
int32_t m_num_classes;
}; /* MulticlassModel */
} /* namespace shogun */
#endif /* _MULTICLASS_MODEL__H__ */
|