This file is indexed.

/usr/include/shogun/structure/HMSVMModel.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2012 Fernando Jose Iglesias Garcia
 * Copyright (C) 2012 Fernando Jose Iglesias Garcia
 */

#ifndef _HMSVM_MODEL__H__
#define _HMSVM_MODEL__H__

#include <shogun/structure/StructuredModel.h>
#include <shogun/structure/SequenceLabels.h>
#include <shogun/structure/StateModelTypes.h>
#include <shogun/structure/StateModel.h>

namespace shogun
{

enum EStateModelType;

/**
 * @brief Class CHMSVMModel that represents the application specific model
 * and contains the application dependent logic to solve Hidden Markov Support
 * Vector Machines (HM-SVM) type of problems within a generic SO framework.
 */
class CHMSVMModel : public CStructuredModel
{
	public:
		/** default constructor */
		CHMSVMModel();

		/** constructor
		 *
		 * @param features the feature vectors, must be of type MatrixFeatures
		 * @param labels sequence labels
		 * @param smt internal state representation
		 * @param num_obs number of observations
		 * @param use_plifs whether to model the observations using PLiFs
		 */
		CHMSVMModel(CFeatures* features, CStructuredLabels* labels, EStateModelType smt, int32_t num_obs=0, bool use_plifs=false);

		/** destructor */
		virtual ~CHMSVMModel();

		/**
		 * return the dimensionality of the joint feature space, i.e.
		 * the dimension of the weight vector \f$w\f$
		 */
		virtual int32_t get_dim() const;

		/**
		 * get joint feature vector
		 *
		 * \f[
		 * \vec{\Psi}(\bf{x}_\text{feat\_idx}, \bf{y})
		 * \f]
		 *
		 * @param feat_idx index of the feature vector to use
		 * @param y structured label to use
		 *
		 * @return the joint feature vector
		 */
		virtual SGVector< float64_t > get_joint_feature_vector(int32_t feat_idx, CStructuredData* y);

		/**
		 * obtains the argmax of \f$ \Delta(y_{pred}, y_{truth}) +
		 * \langle w, \Psi(x_{truth}, y_{pred}) \rangle \f$
		 *
		 * @param w weight vector
		 * @param feat_idx index of the feature to compute the argmax
		 * @param training true if argmax is called during training.
		 * Then, it is assumed that the label indexed by feat_idx in
		 * m_labels corresponds to the true label of the corresponding
		 * feature vector.
		 *
		 * @return structure with the predicted output
		 */
		virtual CResultSet* argmax(SGVector< float64_t > w, int32_t feat_idx, bool const training = true);

		/** computes \f$ \Delta(y_{1}, y_{2}) \f$
		 *
		 * @param y1 an instance of structured data
		 * @param y2 another instance of structured data
		 *
		 * @return loss value
		 */
		virtual float64_t delta_loss(CStructuredData* y1, CStructuredData* y2);

		/** initialize the optimization problem
		 *
		 * @param regularization regularization strength
		 * @param A  is [-dPsi(y) | -I_N ] with M+N columns => max. M+1 nnz per row
		 * @param a
		 * @param B
		 * @param b rhs of the equality constraints
		 * @param b  upper bounds of the constraints, Ax <= b
		 * @param lb lower bound for the weight vector
		 * @param ub upper bound for the weight vector
		 * @param C  regularization matrix, w'Cw
		 */
		virtual void init_primal_opt(
				float64_t regularization,
				SGMatrix< float64_t > & A,  SGVector< float64_t > a,
				SGMatrix< float64_t > B,  SGVector< float64_t > & b,
				SGVector< float64_t > lb, SGVector< float64_t > ub,
				SGMatrix < float64_t > & C);

		/**
		 * method to be called from a SO machine before training
		 * to ensure that the training data is valid
		 */
		virtual bool check_training_setup() const;

		/**
		 * get the number of auxiliary variables to introduce in the
		 * optimization problem. The auxiliary variables are used to
		 * implement smoothness regularization between adjacent emission
		 * scores via constraints.
		 *
		 * @return the number of auxiliary variables
		 */
		virtual int32_t get_num_aux() const;

		/**
		 * get the number of auxiliary constraints to introduce in the
		 * optimization problem. These constraints are used to implement
		 * smoothness regularization between adjacent emission scores.
		 *
		 * @return the number of auxiliary constraints
		 */
		virtual int32_t get_num_aux_con() const;

		/** setter for use_plifs
		 *
		 * @param use_plifs whether PLiFs shall be used
		 */
		void set_use_plifs(bool use_plifs);

		/**
		 * initializes the emission and transmission vectors of weights used in Viterbi
		 * decoding. In case PLiFs are used, it also initializes the matrix of PLiFs and
		 * automatically selects the supporting points based on the feature values
		 */
		virtual void init_training();

		/** get transmission weights
		 *
		 * @return vector with the transmission weights
		 */
		SGMatrix< float64_t > get_transmission_weights() const;

		/** get emission weights
		 *
		 * @return vector with the emission weights
		 */
		SGVector< float64_t > get_emission_weights() const;

		/** get state model
		 *
		 * @return model with the description of the states
		 */
		CStateModel* get_state_model() const;

		/** return the SGSerializable's name
		 *
		 * @return name Gaussian
		 */
		virtual const char* get_name() const { return "HMSVMModel"; }

	private:
		/* internal initialization */
		void init();

	private:
		/** in case of discrete observations, the cardinality of the space of observations */
		int32_t m_num_obs;

		/** the number of auxiliary variables */
		int32_t m_num_aux;

		/** the state model */
		CStateModel* m_state_model;

		/** transition weights used in Viterbi */
		SGMatrix< float64_t > m_transmission_weights;

		/** emission weights used in Viterbi */
		SGVector< float64_t > m_emission_weights;

		/** number of supporting points for each PLiF */
		int32_t m_num_plif_nodes;

		/** PLiF matrix of dimensions (num_states, num_features) */
		CDynamicObjectArray* m_plif_matrix;

		/** whether to use PLiFs. Otherwise, the observations must be discrete and finite */
		bool m_use_plifs;

}; /* class CHMSVMModel */

} /* namespace shogun */

#endif /* _HMSVM_MODEL__H__ */