/usr/include/shogun/structure/FactorGraphModel.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Shell Hu
* Copyright (C) 2013 Shell Hu
*/
#ifndef __FACTOR_GRAPH_MODEL_H__
#define __FACTOR_GRAPH_MODEL_H__
#include <shogun/lib/SGString.h>
#include <shogun/lib/DynamicObjectArray.h>
#include <shogun/structure/StructuredModel.h>
#include <shogun/structure/FactorType.h>
#include <shogun/structure/MAPInference.h>
namespace shogun
{
/** @brief CFactorGraphModel defines a model in terms of CFactorGraph
* and CMAPInference, where parameters are associated with factor types,
* in the model. There is a mapping vector records the locations of
* local factor parameters in the global parameter vector.
*
* TODO: implement functions for SGD
*/
class CFactorGraphModel : public CStructuredModel
{
public:
/** constructor */
CFactorGraphModel();
/** constructor
*
* @param features pointer to structured inputs
* @param labels pointer to structured outputs
* @param inf_type MAP inference type, default is tree max-product inference
* @param verbose whether output verbose information, such as energy table, slack variables etc.
* NOTE: do NOT set this up when training with large data, massive printing will crash the program
*/
CFactorGraphModel(CFeatures* features, CStructuredLabels* labels,
EMAPInferType inf_type = TREE_MAX_PROD, bool verbose = false);
/** destructor */
~CFactorGraphModel();
/** @return name of SGSerializable */
virtual const char* get_name() const { return "FactorGraphModel"; }
/** add a new factor type, NOTE: a factor type is not allowed to change
* once it has been added to the FactorGraphModel. Secondly, the model itself
* should not be modified during training, i.e. no add/delete operations.
*
* @param ftype pointer to new factor type
*/
void add_factor_type(CFactorType* ftype);
/** delete a factor type
*
* @param ftype_id factor type id
*/
void del_factor_type(const int32_t ftype_id);
/** @return pointer to the array of factor types */
CDynamicObjectArray* get_factor_types() const;
/** get a factor type specified by its id
*
* @param ftype_id factor type id
*/
CFactorType* get_factor_type(const int32_t ftype_id) const;
/** @return parameter mapping for all factor types */
SGVector<int32_t> get_global_params_mapping() const;
/** get parameter mapping for a factor type
*
* @param ftype_id factor type id
*/
SGVector<int32_t> get_params_mapping(const int32_t ftype_id);
/** @return concatenated parameter vector from local parameters */
SGVector<float64_t> fparams_to_w();
/** update local parameters
*
* @param w new global parameter vector
*/
void w_to_fparams(SGVector<float64_t> w);
/**
* get joint feature vector
*
* \f[
* \vec{\Psi}(\bf{x}_\text{feat\_idx}, \bf{y})
* \f]
*
* @param feat_idx index of the feature vector to use
* @param y structured label to use
*
* @return the joint feature vector
*/
virtual SGVector< float64_t > get_joint_feature_vector(int32_t feat_idx, CStructuredData* y);
/**
* obtains the argmax of \f$ \Delta(y_{pred}, y_{truth}) +
* \langle w, \Psi(x_{truth}, y_{pred}) \rangle \f$
*
* @param w weight vector
* @param feat_idx index of the feature to compute the argmax
* @param training true if argmax is called during training.
* Then, it is assumed that the label indexed by feat_idx in
* m_labels corresponds to the true label of the corresponding
* feature vector.
*
* @return structure with the predicted output
*/
virtual CResultSet* argmax(SGVector< float64_t > w, int32_t feat_idx, bool const training = true);
/** computes \f$ \Delta(y_{1}, y_{2}) \f$
*
* @param y1 an instance of structured data
* @param y2 another instance of structured data
*
* @return loss value
*/
virtual float64_t delta_loss(CStructuredData* y1, CStructuredData* y2);
/** initializes the part of the model that needs to be used during training.
* In this class this method is empty and it can be re-implemented for any
* particular StructuredModel
*/
virtual void init_training();
/** initialize the optimization problem for primal solver
*
* @param regularization input for C
* @param A is [-dPsi(y) | -I_N ] with M+N columns => max. M+1 nnz per row
* @param a unused input
* @param B unused input
* @param b upper bounds of the constraints, Ax <= b
* @param lb lower bounds for w
* @param ub upper bounds for w
* @param C regularization matrix, w'Cw
*/
virtual void init_primal_opt(
float64_t regularization,
SGMatrix< float64_t > & A, SGVector< float64_t > a,
SGMatrix< float64_t > B, SGVector< float64_t > & b,
SGVector< float64_t > lb, SGVector< float64_t > ub,
SGMatrix < float64_t > & C);
/**
* return the dimensionality of the joint feature space, i.e.
* the dimension of the weight vector \f$w\f$
*/
virtual int32_t get_dim() const;
private:
/** register and initialize parameters */
void init();
protected:
/** array of factor types */
CDynamicObjectArray* m_factor_types;
/** index of factor type */
SGVector<int32_t> m_w_map;
/** cache of global parameters */
SGVector<float64_t> m_w_cache;
/** MAP inference type */
EMAPInferType m_inf_type;
/** whether print verbose information */
bool m_verbose;
};
}
#endif
|