This file is indexed.

/usr/include/shogun/structure/DynProg.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Gunnar Raetsch
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Written (W) 2008-2009 Jonas Behr
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef __CDYNPROG_H__
#define __CDYNPROG_H__

#include <shogun/mathematics/Math.h>
#include <shogun/lib/common.h>
#include <shogun/base/SGObject.h>
#include <shogun/io/SGIO.h>
#include <shogun/lib/config.h>
#include <shogun/structure/PlifMatrix.h>
#include <shogun/structure/PlifBase.h>
#include <shogun/structure/Plif.h>
#include <shogun/structure/IntronList.h>
#include <shogun/structure/SegmentLoss.h>
#include <shogun/features/StringFeatures.h>
#include <shogun/features/SparseFeatures.h>
#include <shogun/distributions/Distribution.h>
#include <shogun/lib/DynamicArray.h>
#include <shogun/lib/DynamicObjectArray.h>
#include <shogun/lib/Time.h>

#include <stdio.h>
#include <limits.h>

namespace shogun
{
	template <class T> class CSparseFeatures;
	class CIntronList;
	class CPlifMatrix;
	class CSegmentLoss;

	template <class T> class CDynamicArray;

//#define DYNPROG_TIMING

#ifdef USE_BIGSTATES
typedef uint16_t T_STATES ;
#else
typedef uint8_t T_STATES ;
#endif
typedef T_STATES* P_STATES ;

#ifndef DOXYGEN_SHOULD_SKIP_THIS
/** @brief segment loss */
struct segment_loss_struct
{
    /** maximum lookback */
    int32_t maxlookback;
    /** sequence length */
    int32_t seqlen;
    /** segments changed */
    int32_t *segments_changed;
    /** numb segment ID */
    float64_t *num_segment_id;
    /** length of segmend ID */
    int32_t *length_segment_id ;
};
#endif

/** @brief Dynamic Programming Class.
 *
 * Structure and Function collection.
 * This Class implements a Dynamic Programming functions.
 */
class CDynProg : public CSGObject
{
public:
	/** constructor
	 *
	 * @param p_num_svms number of SVMs
	 */
	CDynProg(int32_t p_num_svms=8);
	virtual ~CDynProg();

	// model related functions
	/** set number of states
	 * use this to set N first
	 *
	 * @param N new N
	 */
	void set_num_states(int32_t N);

	/** get num states */
	int32_t get_num_states();

	/** get num svms*/
	int32_t get_num_svms();

	/** init CDynamicArray for precomputed content svm values
	 *  with size seq_len x num_svms
	 *
	 *  @param p_num_svms: number of svm weight vectors for content prediction
	 */
	void init_content_svm_value_array(const int32_t p_num_svms);

	/** init CDynamicArray for precomputed tiling intensitie-plif-values
	 *  with size seq_len x num_svms
	 *
	 *  @param probe_pos local positions of probes
	 *  @param intensities intensities of probes
	 *  @param num_probes number of probes
	 */
	void init_tiling_data(int32_t* probe_pos, float64_t* intensities, const int32_t num_probes);

	/** precompute tiling Plifs
	 *
	 * @param PEN Plif PEN
	 * @param tiling_plif_ids tiling plif id's
	 * @param num_tiling_plifs number of tiling plifs
	 */
	void precompute_tiling_plifs(CPlif** PEN, const int32_t* tiling_plif_ids, const int32_t num_tiling_plifs);

	/** append rows to linear features array
	 *
	 * @param num_new_feat number of new rows to add
	 */
	void resize_lin_feat(int32_t num_new_feat);
	/** set vector p
	 *
	 * @param p new vector p
	 */
	void set_p_vector(SGVector<float64_t> p);

	/** set vector q
	 *
	 * @param q new vector q
	 */
	void set_q_vector(SGVector<float64_t> q);

	/** set matrix a
	 *
	 * @param a new matrix a
	 */
	void set_a(SGMatrix<float64_t> a);

	/** set a id
	 *
	 * @param a new a id
	 */
	void set_a_id(SGMatrix<int32_t> a);

	/** set a transition matrix
	 *
	 * @param a_trans transition matrix a
	 */
	void set_a_trans_matrix(SGMatrix<float64_t> a_trans);

	/** init mod words array
	 *
	 * @param p_mod_words_array new mod words array
	 */
	void init_mod_words_array(SGMatrix<int32_t> p_mod_words_array);

	/** check SVM arrays
	 * call this function to check consistency
	 *
	 * @return whether arrays are ok
	 */
	bool check_svm_arrays();

	/** set best path seq
	 *
	 * @param seq signal features
	 */
	void set_observation_matrix(SGNDArray<float64_t> seq);

	/** get number of positions; the dynamic program is sparse encoded
	 *  and this function gives the number of positions that can actually
	 *  be part of a predicted path
	 *
	 * @return number of positions
	 */
	int32_t get_num_positions();

	/** set an array of length #(candidate positions)
	 *  which specifies the content type of each pos
	 *  and a mask that determines to which extend the
	 *  loss should be applied to this position; this
	 *  is a way to encode label confidence via weights
	 *  between zero and one
	 *
	 * @param seg_path seg path
	 */
	void set_content_type_array(SGMatrix<float64_t> seg_path);

	/** set best path pos
	 *
	 * @param pos the position vector
	 */
	void set_pos(SGVector<int32_t> pos);

	/** set best path orf info
	 * only for compute_nbest_paths
	 *
	 * @param orf_info the orf info
	 */
	void set_orf_info(SGMatrix<int32_t> orf_info);

	/** set best path genesstr
	 *
	 * @param genestr gene string
	 */
	void set_gene_string(SGVector<char> genestr);


	/** set best path dict weights
	 *
	 * @param dictionary_weights dictionary weights
	 */
	void set_dict_weights(SGMatrix<float64_t> dictionary_weights);

	/** set best path segment loss
	 *
	 * @param segment_loss segment loss
	 */
	void best_path_set_segment_loss(SGMatrix<float64_t> segment_loss);

	/** set best path segmend ids mask
	 *
	 * @param segment_ids segment ids
	 * @param segment_mask segment mask
	 * @param m dimension m
	 */
	void best_path_set_segment_ids_mask(int32_t* segment_ids, float64_t* segment_mask, int32_t m);

	/** set sparse feature matrices */
	void set_sparse_features(CSparseFeatures<float64_t>* seq_sparse1, CSparseFeatures<float64_t>* seq_sparse2);

	/** set plif matrices
	 *
	 * @param pm plif matrix object
	 */
	void set_plif_matrices(CPlifMatrix* pm);

	// best_path result retrieval functions
	/** best path get scores
	 *
	 * @return scores scores
	 */
	SGVector<float64_t> get_scores();

	/** best path get states
	 *
	 * @return states states
	 */
	SGMatrix<int32_t> get_states();

	/** best path get positions
	 *
	 * @return positions positions
	 */
	SGMatrix<int32_t> get_positions();


	/** run the viterbi algorithm to compute the n best viterbi paths
	 *
	 * @param max_num_signals maximal number of signals for a single state
	 * @param use_orf whether orf shall be used
	 * @param nbest number of best paths (n)
	 * @param with_loss use loss
	 * @param with_multiple_sequences !!!not functional set to false!!!
	 */
	void compute_nbest_paths(int32_t max_num_signals,
						 bool use_orf, int16_t nbest, bool with_loss, bool with_multiple_sequences);

////////////////////////////////////////////////////////////////////////////////

	/** given a path though the state model and the corresponding
	 *  positions compute the features. This can be seen as the derivative
	 *  of the score (output of dynamic program) with respect to the
	 *  parameters
	 *
	 * @param my_state_seq state sequence of the path
	 * @param my_pos_seq sequence of positions
	 * @param my_seq_len length of state and position sequences
	 * @param seq_array array of features
	 * @param max_num_signals maximal number of signals
	 */
	void best_path_trans_deriv(
			int32_t* my_state_seq, int32_t *my_pos_seq,
			int32_t my_seq_len, const float64_t *seq_array, int32_t max_num_signals);

	// additional best_path_trans_deriv functions
	/** set best path my state sequence
	 *
	 * @param my_state_seq my state sequence
	 */
	void set_my_state_seq(int32_t* my_state_seq);

	/** set best path my position sequence
	 *
	 * @param my_pos_seq my position sequence
	 */
	void set_my_pos_seq(int32_t* my_pos_seq);

	/** get path scores
	 *
	 * best_path_trans_deriv result retrieval functions
	 *
	 * @param my_scores scores
	 * @param seq_len length of sequence
	 */
	void get_path_scores(float64_t** my_scores, int32_t* seq_len);

	/** get path losses
	 *
	 * best_path_trans_deriv result retrieval functions
	 *
	 * @param my_losses my losses
	 * @param seq_len length of sequence
	 */
	void get_path_losses(float64_t** my_losses, int32_t* seq_len);


	/// access function for number of states N
	inline T_STATES get_N() const
	{
		return m_N ;
	}

	/** access function for probability of end states
	 * @param offset index 0...N-1
	 * @param value value to be set
	 */
	inline void set_q(T_STATES offset, float64_t value)
	{
		m_end_state_distribution_q[offset]=value;
	}

	/** access function for probability of first state
	 * @param offset index 0...N-1
	 * @param value value to be set
	 */
	inline void set_p(T_STATES offset, float64_t value)
	{
		m_initial_state_distribution_p[offset]=value;
	}

	/** access function for matrix a
	 *
	 * @param line_ row in matrix 0...N-1
	 * @param column column in matrix 0...N-1
	 * @param value value to be set
	 */
	inline void set_a(T_STATES line_, T_STATES column, float64_t value)
	{
	  m_transition_matrix_a.element(line_,column)=value; // look also best_path!
	}

	/** access function for probability of end states
	 *
	 * @param offset index 0...N-1
	 * @return value at offset
	 */
	inline float64_t get_q(T_STATES offset) const
	{
		return m_end_state_distribution_q[offset];
	}

	/** access function for derivated probability of end states
	 *
	 * @param offset index 0...N-1
	 * @return value at offset
	 */
	inline float64_t get_q_deriv(T_STATES offset) const
	{
		return m_end_state_distribution_q_deriv[offset];
	}

	/** access function for probability of initial states
	 *
	 * @param offset index 0...N-1
	 * @return value at offset
	 */
	inline float64_t get_p(T_STATES offset) const
	{
		return m_initial_state_distribution_p[offset];
	}

	/** access function for derivated probability of initial states
	 *
	 * @param offset index 0...N-1
	 * @return value at offset
	 */
	inline float64_t get_p_deriv(T_STATES offset) const
	{
		return m_initial_state_distribution_p_deriv[offset];
	}

	/** create array of precomputed content svm values
	 *
	 */
	void precompute_content_values();

	/** return array of precomputed linear features like content predictions
	 *  and PLiFed tiling array data
	 * Jonas
	 *
	 * @return lin_feat_array
	 */
	inline float64_t* get_lin_feat(int32_t & dim1, int32_t & dim2)
	{
		m_lin_feat.get_array_size(dim1, dim2);
		return m_lin_feat.get_array();
	}
	/** set your own array of precomputed linear features like content predictions
	 *  and PLiFed tiling array data
	 * Jonas
	 *
	 * @param p_lin_feat array of features
	 * @param p_num_svms number of tracks
	 * @param p_seq_len number of candidate positions
	 */
	inline void set_lin_feat(float64_t* p_lin_feat, int32_t p_num_svms, int32_t p_seq_len)
	{
	  m_lin_feat.set_array(p_lin_feat, p_num_svms, p_seq_len, true, true);
	}
	/** create word string from char*
	 * Jonas
	 *
	 */
	void create_word_string();

	/** precompute stop codons
	 */
	void precompute_stop_codons();

	/** access function for matrix a
	 *
	 * @param line_ row in matrix 0...N-1
	 * @param column column in matrix 0...N-1
	 * @return value at position line colum
	 */
	inline float64_t get_a(T_STATES line_, T_STATES column) const
	{
	  return m_transition_matrix_a.element(line_, column); // look also best_path()!
	}

	/** access function for matrix a derivated
	 *
	 * @param line_ row in matrix 0...N-1
	 * @param column column in matrix 0...N-1
	 * @return value at position line colum
	 */
	inline float64_t get_a_deriv(T_STATES line_, T_STATES column) const
	{
	  return m_transition_matrix_a_deriv.element(line_, column); // look also best_path()!
	}
	//@}
	/** set intron list
	 *
	 * @param intron_list
	 * @param num_plifs number of intron plifs
	 */
	void set_intron_list(CIntronList* intron_list, int32_t num_plifs);

	/** get the segment loss object */
	CSegmentLoss* get_segment_loss_object()
	{
		return m_seg_loss_obj;
	}

	/** settings for long transition handling
	 *
	 *  @param use_long_transitions use the long transition approximation
	 *  @param threshold use long transition for segments larger than
	 *  @param max_len allow transitions up to
	 *  */
	void long_transition_settings(bool use_long_transitions, int32_t threshold, int32_t max_len)
	{
		m_long_transitions = use_long_transitions;
		m_long_transition_threshold = threshold;
		SG_DEBUG("ignoring max_len\n")
		//m_long_transition_max = max_len;
	}

protected:

	/* helper functions */

	/** lookup content SVM values
	 *
	 * @param from_state from state
	 * @param to_state to state
	 * @param from_pos from position
	 * @param to_pos to position
	 * @param svm_values SVM values
	 * @param frame frame
	 */
	void lookup_content_svm_values(const int32_t from_state,
		const int32_t to_state, const int32_t from_pos, const int32_t to_pos,
		float64_t* svm_values, int32_t frame);

	/** lookup tiling Plif values
	 *
	 * @param from_state from state
	 * @param to_state to state
	 * @param len length
	 * @param svm_values SVM values
	 */
	inline void lookup_tiling_plif_values(const int32_t from_state,
		const int32_t to_state, const int32_t len, float64_t* svm_values);

	/** find frame
	 *
	 * @param from_state from state
	 */
	inline int32_t find_frame(const int32_t from_state);

	/** raw intensities interval query
	 *
	 * @param from_pos from position
	 * @param to_pos to position
	 * @param intensities intensities
	 * @param type type
	 * @return an integer
	 */
	inline int32_t raw_intensities_interval_query(
		const int32_t from_pos, const int32_t to_pos, float64_t* intensities, int32_t type);

#ifndef DOXYGEN_SHOULD_SKIP_THIS
	/** @brief SVM values */
	struct svm_values_struct
	{
		/** maximum lookback */
		int32_t maxlookback;
		/** sequence length */
		int32_t seqlen;

		/** start position */
		int32_t* start_pos;
		/** SVM values normalized */
		float64_t ** svm_values_unnormalized;
		/** SVM values */
		float64_t * svm_values;
		/** word used */
		bool *** word_used;
		/** number of unique words */
		int32_t **num_unique_words;
	};
#endif // DOXYGEN_SHOULD_SKIP_THIS

	/** extend orf
	 *
	 * @param orf_from orf from
	 * @param orf_to orf to
	 * @param start start
	 * @param last_pos last position
	 * @param to to
	 */
	bool extend_orf(int32_t orf_from, int32_t orf_to, int32_t start, int32_t &last_pos, int32_t to);

	/** @return object name */
	virtual const char* get_name() const { return "DynProg"; }

private:

	T_STATES trans_list_len;
	T_STATES **trans_list_forward;
	T_STATES *trans_list_forward_cnt;
	float64_t **trans_list_forward_val;
	int32_t **trans_list_forward_id;
	bool mem_initialized;

#ifdef DYNPROG_TIMING
	CTime MyTime;
	CTime MyTime2;
	CTime MyTime3;

	float64_t segment_init_time;
	float64_t segment_pos_time;
	float64_t segment_clean_time;
	float64_t segment_extend_time;
	float64_t orf_time;
	float64_t content_time;
	float64_t content_penalty_time;
	float64_t content_svm_values_time ;
	float64_t content_plifs_time ;
	float64_t svm_init_time;
	float64_t svm_pos_time;
	float64_t inner_loop_time;
	float64_t inner_loop_max_time ;
	float64_t svm_clean_time;
	float64_t long_transition_time ;
#endif


protected:
	/**@name model specific variables.
	 * these are p,q,a,b,N,M etc
	 */
	//@{
	/// number of states
	int32_t m_N;

	/// transition matrix
	CDynamicArray<int32_t> m_transition_matrix_a_id; // 2d
	CDynamicArray<float64_t> m_transition_matrix_a; // 2d
	CDynamicArray<float64_t> m_transition_matrix_a_deriv; // 2d

	/// initial distribution of states
	CDynamicArray<float64_t> m_initial_state_distribution_p;
	CDynamicArray<float64_t> m_initial_state_distribution_p_deriv;

	/// distribution of end-states
	CDynamicArray<float64_t> m_end_state_distribution_q;
	CDynamicArray<float64_t> m_end_state_distribution_q_deriv;

	//@}

	/** number of degress */
	int32_t m_num_degrees;
	/** number of SVMs */
	int32_t m_num_svms;

	/** word degree */
	CDynamicArray<int32_t> m_word_degree;
	/** cum num words */
	CDynamicArray<int32_t> m_cum_num_words;
	/** cum num words array */
	int32_t * m_cum_num_words_array;
	/** num words */
	CDynamicArray<int32_t> m_num_words;
	/** num words array */
	int32_t* m_num_words_array;
	/** mod words */
	CDynamicArray<int32_t> m_mod_words; // 2d
	/** mod words array */
	int32_t* m_mod_words_array;
	/** sign words */
	CDynamicArray<bool> m_sign_words;
	/** sign words array */
	bool* m_sign_words_array;
	/** string words */
	CDynamicArray<int32_t> m_string_words;
	/** string words array */
	int32_t* m_string_words_array;

	/** SVM start position */
//	CDynamicArray<int32_t> m_svm_pos_start;
	/** number of unique words */
	CDynamicArray<int32_t> m_num_unique_words;
	/** SVM arrays clean */
	bool m_svm_arrays_clean;
	/** max a id */
	int32_t m_max_a_id;

	// input arguments
	/** sequence */
	CDynamicArray<float64_t> m_observation_matrix; //3d
	/** candidate position */
	CDynamicArray<int32_t> m_pos;
	/** number of candidate positions */
	int32_t m_seq_len;
	/** orf info */
	CDynamicArray<int32_t> m_orf_info; // 2d
	/** segment sum weights */
	CDynamicArray<float64_t> m_segment_sum_weights; // 2d
	/** Plif list */
	CDynamicObjectArray m_plif_list; // CPlifBase*
	/** a single string (to be segmented) */
	CDynamicArray<char> m_genestr;
	/**
	  wordstr is a vector of L n-gram indices, with wordstr(i) representing a number betweeen 0 and 4095
	  corresponding to the 6-mer in genestr(i-5:i)
	  pos is a vector of candidate transition positions (it is input to compute_nbest_paths)
	  t_end is some index in pos

	  svs has been initialized by init_svm_values

	  At the end of this procedure,
	  svs.svm_values[i+s*svs.seqlen] has the value of the s-th SVM on genestr(pos(t_end-i):pos(t_end))
	  for every i satisfying pos(t_end)-pos(t_end-i) <= svs.maxlookback

	  The SVM weights are precomputed in m_dict_weights
	**/
	uint16_t*** m_wordstr;
	/** dict weights */
	CDynamicArray<float64_t> m_dict_weights; // 2d
	/** segment loss */
	CDynamicArray<float64_t> m_segment_loss; // 3d
	/** segment IDs */
	CDynamicArray<int32_t> m_segment_ids;
	/** segment mask */
	CDynamicArray<float64_t> m_segment_mask;
	/** my state seq */
	CDynamicArray<int32_t> m_my_state_seq;
	/** my position sequence */
	CDynamicArray<int32_t> m_my_pos_seq;
	/** my scores */
	CDynamicArray<float64_t> m_my_scores;
	/** my losses */
	CDynamicArray<float64_t> m_my_losses;

	/** segment loss object containing the functions
	 *  to compute the segment loss*/
	CSegmentLoss* m_seg_loss_obj;

	// output arguments
	/** scores */
	CDynamicArray<float64_t> m_scores;
	/** states */
	CDynamicArray<int32_t> m_states; // 2d
	/** positions */
	CDynamicArray<int32_t> m_positions; // 2d

	/** sparse feature matrix dim1*/
	CSparseFeatures<float64_t>* m_seq_sparse1;
	/** sparse feature matrix dim2*/
	CSparseFeatures<float64_t>* m_seq_sparse2;
	/** plif matrices*/
	CPlifMatrix* m_plif_matrices;

	/** storeage of stop codons
	 *  array of size length(sequence)
	 */
	CDynamicArray<bool> m_genestr_stop;

	/** administers a list of introns and quality scores
	 *  and provides functions for fast access */
	CIntronList* m_intron_list;

	/** number of intron features and plifs*/
	int32_t m_num_intron_plifs;

	/**
	 *  array for storage of precomputed linear features linge content svm values or pliffed tiling data
	 * Jonas
	 */
	CDynamicArray<float64_t> m_lin_feat; // 2d

	/** raw intensities */
	float64_t *m_raw_intensities;
	/** probe position */
	int32_t* m_probe_pos;
	/** number of probes */
	int32_t* m_num_probes_cum;
	/** num lin feat plifs cum */
	int32_t* m_num_lin_feat_plifs_cum;
	/** number of additional data tracks like tiling, RNA-Seq, ...*/
	int32_t m_num_raw_data;

	/** use long transition approximation*/
	bool m_long_transitions ;
	/** threshold for transitions that are computed
	 *  the traditional way*/
	int32_t m_long_transition_threshold  ;
	/** maximal length of a long transition
	 *  Note: is ignored in the current implementation
	 *        => arbitrarily long transitions can be decoded
	 */
	//int32_t m_long_transition_max ;

	/**default values defining the k-mer degrees
	 * used for content type prediction
	 */
	static int32_t word_degree_default[4];

	/**default values storing the cumulative sum
	 * of the number of kmers that exist for the
	 * different degrees e.g. matlab spoken: cumsum(4.^[3 4 5 6])*/
	static int32_t cum_num_words_default[5];

	/**default values defining which of the plif are the
	 * frame specific plifs*/
	static int32_t frame_plifs[3];

	/**default values like cum_num_words_default
	 * but not cumsumed: e.g. 4.^[3 4 5 6]*/
	static int32_t num_words_default[4];

	/**default values*/
	static int32_t mod_words_default[32];

	/**default values*/
	static bool sign_words_default[16];

	/**default values*/
	static int32_t string_words_default[16];
};
}
#endif