/usr/include/shogun/structure/DualLibQPBMSOSVM.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2012 Michal Uricar
* Copyright (C) 2012 Michal Uricar
*/
#ifndef _DUALLIBQPBMSOSVM__H__
#define _DUALLIBQPBMSOSVM__H__
#include <shogun/machine/LinearStructuredOutputMachine.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/structure/BmrmStatistics.h>
namespace shogun
{
/**
* Enum
* Training method selection
*/
enum ESolver
{
BMRM=1, /**< Standard BMRM algorithm. */
PPBMRM=2, /**< Proximal Point BMRM (BMRM with prox-term) */
P3BMRM=3, /**< Proximal Point P-BMRM (multiple cutting plane models) */
NCBM=4
};
/**
* @brief Class DualLibQPBMSOSVM that uses Bundle Methods for Regularized Risk
* Minimization algorithms for structured output (SO) problems [1] presented
* in [2].
*
* [1] Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.
* Support Vector Machine Learning for Interdependent and Structured Ouput
* Spaces.
* http://www.cs.cornell.edu/People/tj/publications/tsochantaridis_etal_04a.pdf
*
* [2] Teo, C.H., Vishwanathan, S.V.N, Smola, A. and Quoc, V.Le.
* Bundle Methods for Regularized Risk Minimization
* http://users.cecs.anu.edu.au/~chteo/pub/TeoVisSmoLe10.pdf
*/
class CDualLibQPBMSOSVM : public CLinearStructuredOutputMachine
{
public:
/** default constructor */
CDualLibQPBMSOSVM();
/** constructor
*
* @param model Structured Model
* @param labs Structured labels
* @param _lambda Regularization constant
* @param W initial solution of weight vector
*/
CDualLibQPBMSOSVM(
CStructuredModel* model,
CStructuredLabels* labs,
float64_t _lambda,
SGVector< float64_t > W=0);
/** destructor */
virtual ~CDualLibQPBMSOSVM();
/** @return name of SGSerializable */
virtual const char* get_name() const { return "DualLibQPBMSOSVM"; }
/** set lambda
*
* @param _lambda Regularization constant
*/
inline void set_lambda(float64_t _lambda) { m_lambda=_lambda; }
/** get lambda
*
* @return Regularization constant
*/
inline float64_t get_lambda() { return m_lambda; }
/** set relative tolerance
*
* @param TolRel Relative tolerance
*/
inline void set_TolRel(float64_t TolRel) { m_TolRel=TolRel; }
/** get relative tolerance
*
* @return Relative tolerance
*/
inline float64_t get_TolRel() { return m_TolRel; }
/** set absolute tolerance
*
* @param TolAbs Absolute tolerance
*/
inline void set_TolAbs(float64_t TolAbs) { m_TolAbs=TolAbs; }
/** get absolute tolerance
*
* @return Absolute tolerance
*/
inline float64_t get_TolAbs() { return m_TolAbs; }
/** set size of cutting plane buffer
*
* @param BufSize Size of the cutting plane buffer (i.e. maximal number of
* iterations)
*/
inline void set_BufSize(uint32_t BufSize) { m_BufSize=BufSize; }
/** get size of cutting plane buffer
*
* @return Size of the cutting plane buffer
*/
inline uint32_t get_BufSize() { return m_BufSize; }
/** set ICP removal flag
*
* @param cleanICP Flag that enables/disables inactive cutting plane removal
* feature
*/
inline void set_cleanICP(bool cleanICP) { m_cleanICP=cleanICP; }
/** get ICP removal flag
*
* @return Status of inactive cutting plane removal feature (enabled/disabled)
*/
inline bool get_cleanICP() { return m_cleanICP; }
/** set number of iterations for cleaning ICP
*
* @param cleanAfter Specifies number of iterations that inactive cutting
* planes has to be inactive for to be removed
*/
inline void set_cleanAfter(uint32_t cleanAfter) { m_cleanAfter=cleanAfter; }
/** get number of iterations for cleaning ICP
*
* @return Number of iterations that inactive cutting planes has to be
* inactive for to be removed
*/
inline uint32_t get_cleanAfter() { return m_cleanAfter; }
/** set K
*
* @param K Parameter K
*/
inline void set_K(float64_t K) { m_K=K; }
/** get K
*
* @return K
*/
inline float64_t get_K() { return m_K; }
/** set Tmax
*
* @param Tmax Parameter Tmax
*/
inline void set_Tmax(uint32_t Tmax) { m_Tmax=Tmax; }
/** get Tmax
*
* @return Tmax
*/
inline uint32_t get_Tmax() { return m_Tmax; }
/** set number of cutting plane models
*
* @param cp_models Number of cutting plane models
*/
inline void set_cp_models(uint32_t cp_models) { m_cp_models=cp_models; }
/** get number of cutting plane models
*
* @return Number of cutting plane models
*/
inline uint32_t get_cp_models() { return m_cp_models; }
/** get bmrm result
*
* @return Result returned from Bundle Method algorithm
*/
inline BmrmStatistics get_result() { return m_result; }
/** get training algorithm
*
* @return Type of Bundle Method solver used for training
*/
inline ESolver get_solver() { return m_solver; }
/** set training algorithm
*
* @param solver Type of Bundle Method solver used for training
*/
inline void set_solver(ESolver solver) { m_solver=solver; }
/** set initial value of weight vector w
*
* @param W initial weight vector
*/
inline void set_w(SGVector< float64_t > W)
{
REQUIRE(W.vlen == m_model->get_dim(), "Dimension of the initial "
"solution must match the model's dimension!\n");
m_w=W;
}
/** get classifier type
*
* @return classifier type CT_LIBQPSOSVM
*/
virtual EMachineType get_classifier_type();
protected:
/** train dual SO-SVM
*
*/
bool train_machine(CFeatures* data=NULL);
private:
/** init parameters
*
*/
void init();
private:
/** lambda */
float64_t m_lambda;
/** TolRel */
float64_t m_TolRel;
/** TolAbs */
float64_t m_TolAbs;
/** BufSize */
uint32_t m_BufSize;
/** Clean ICP */
bool m_cleanICP;
/** Clean ICP after n-th iteration */
uint32_t m_cleanAfter;
/** K */
float64_t m_K;
/** Tmax */
uint32_t m_Tmax;
/** number of cutting plane models */
uint32_t m_cp_models;
/** BMRM result */
BmrmStatistics m_result;
/** training algorithm */
ESolver m_solver;
}; /* class CDualLibQPBMSOSVM */
} /* namespace shogun */
#endif /* _DUALLIBQPBMSOSVM__H__ */
|