/usr/include/shogun/statistics/KernelTwoSampleTestStatistic.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2012-2013 Heiko Strathmann
*/
#ifndef __KERNELTWOSAMPLETESTSTATISTIC_H_
#define __KERNELTWOSAMPLETESTSTATISTIC_H_
#include <shogun/statistics/TwoDistributionsTestStatistic.h>
#include <shogun/kernel/Kernel.h>
namespace shogun
{
class CFeatures;
class CKernel;
/** @brief Two sample test base class. Provides an interface for performing a
* two-sample test, i.e. Given samples from two distributions \f$p\f$ and
* \f$q\f$, the null-hypothesis is: \f$H_0: p=q\f$, the alternative hypothesis:
* \f$H_1: p\neq q\f$.
*
* In this class, this is done using a single kernel for the data.
*
* The class also re-implements the bootstrap_null() method. If the underlying
* kernel is a custom one (precomputed), the
*
* Abstract base class.
*/
class CKernelTwoSampleTestStatistic : public CTwoDistributionsTestStatistic
{
public:
CKernelTwoSampleTestStatistic();
/** Constructor
*
* @param p_and_q feature data. Is assumed to contain samples from both
* p and q. First all samples from p, then from index q_start all
* samples from q
*
* @param kernel kernel to use
* @param p_and_q samples from p and q, appended
* @param q_start index of first sample of q
*/
CKernelTwoSampleTestStatistic(CKernel* kernel, CFeatures* p_and_q,
index_t q_start);
/** Constructor.
* This is a convienience constructor which copies both features to one
* element and then calls the other constructor. Needs twice the memory
* for a short time
*
* @param kernel kernel for MMD
* @param p samples from distribution p, will be copied and NOT
* SG_REF'ed
* @param q samples from distribution q, will be copied and NOT
* SG_REF'ed
*/
CKernelTwoSampleTestStatistic(CKernel* kernel, CFeatures* p,
CFeatures* q);
virtual ~CKernelTwoSampleTestStatistic();
/** Setter for the underlying kernel
* @param kernel new kernel to use
*/
inline virtual void set_kernel(CKernel* kernel)
{
/* ref before unref to prevent deleting in case objects are the same */
SG_REF(kernel);
SG_UNREF(m_kernel);
m_kernel=kernel;
}
/** @return underlying kernel, is SG_REF'ed */
inline virtual CKernel* get_kernel()
{
SG_REF(m_kernel);
return m_kernel;
}
/** merges both sets of samples and computes the test statistic
* m_bootstrap_iteration times. This version checks if a precomputed
* custom kernel is used, and, if so, just permutes it instead of re-
* computing it in every iteration.
*
* @return vector of all statistics
*/
virtual SGVector<float64_t> bootstrap_null();
/** Same as compute_statistic(), but with the possibility to perform on
* multiple kernels at once
*
* @param multiple_kernels if true, and underlying kernel is K_COMBINED,
* method will be executed on all subkernels on the same data
* @return vector of results for subkernels
*/
virtual SGVector<float64_t> compute_statistic(
bool multiple_kernels)=0;
/** Wrapper for compute_statistic(false) */
virtual float64_t compute_statistic()=0;
virtual const char* get_name() const=0;
private:
void init();
protected:
/** underlying kernel */
CKernel* m_kernel;
};
}
#endif /* __KERNELTWOSAMPLETESTSTATISTIC_H_ */
|