/usr/include/shogun/preprocessor/RandomFourierGaussPreproc.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2010-2011 Alexander Binder
* Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
* Copyright (C) 2010-2011 Berlin Institute of Technology
*/
#ifndef _RANDOMFOURIERGAUSSPREPROC__H__
#define _RANDOMFOURIERGAUSSPREPROC__H__
#include <vector>
#include <algorithm>
#include <shogun/lib/common.h>
#include <shogun/mathematics/Math.h>
#include <shogun/preprocessor/DensePreprocessor.h>
namespace shogun {
/** @brief Preprocessor CRandomFourierGaussPreproc
* implements Random Fourier Features for the Gauss kernel a la Ali Rahimi and Ben Recht Nips2007
* after preprocessing the features using them in a linear kernel approximates a gaussian kernel
*
* approximation quality depends on dimension of feature space, NOT on number of data.
*
* effectively it requires two parameters for initialization: (A) the dimension of the input features stored in
* dim_input_space
* (B) the dimension of the output feature space
*
* in order to make it work there are two ways:
* (1) if you have already previously computed random fourier features which you want to use together with
* newly computed ones, then you have to take the random coefficients from the previous computation and provide them
* via void set_randomcoefficients(...) for the new computation
* this case is important for example if you compute separately features on training and testing data in two feature objects
*
* in this case you have to set
* 1a) void set_randomcoefficients(...)
*
* (2) if you compute random fourier features from scratch
* in this case you have to set
* 2a) set_kernelwidth(...)
* 2b) void set_dim_feature_space(const int32_t dim);
* 2c) set_dim_input_space(const int32_t dim);
* 2d) init_randomcoefficients() or apply_to_feature_matrix(...)
*/
class CRandomFourierGaussPreproc: public CDensePreprocessor<float64_t> {
public:
/** default constructor */
CRandomFourierGaussPreproc();
/** alternative constructor */
CRandomFourierGaussPreproc(const CRandomFourierGaussPreproc & pr);
/** default destructor
* takes care for float64_t* randomcoeff_additive,float64_t* randomcoeff_multiplicative;
*/
~CRandomFourierGaussPreproc();
/** default processing routine, inherited from base class
* @param features the features to be processed, must be of type CDenseFeatures<float64_t>
* @return the processed feature matrix from the CDenseFeatures<float64_t> class
* in case (2) (see description above) this routine requires only steps 2a) and 2b), the rest is determined automatically
*/
virtual SGMatrix<float64_t> apply_to_feature_matrix(CFeatures* features); // ref count fo the feature matrix???
/** alternative processing routine, inherited from base class
* @param vector the feature vector to be processed
* @return processed feature vector
* in order to work this routine requires the steps described above under cases (1) or two (2) before calling this routine
*/
virtual SGVector<float64_t> apply_to_feature_vector(SGVector<float64_t> vector);
/** inherited from base class
* @return C_DENSE
*/
virtual EFeatureType get_feature_type();
/** inherited from base class
* @return F_DREAL
*/
virtual EFeatureClass get_feature_class();
/** initializer routine
* calls set_dim_input_space(const int32_t dim); with the proper value
* calls init_randomcoefficients(); this call does NOT override a previous call to void set_randomcoefficients(...) IF and ONLY IF
* the dimensions of input AND feature space are equal to the values from the previous call to void set_randomcoefficients(...)
* @param f the features to be processed, must be of type CDenseFeatures<float64_t>
* @return true if new random coefficients were generated, false if old ones from a call to set_randomcoefficients(...) are kept
*/
virtual bool init(CFeatures *f);
/** setter for kernel width
* @param width kernel width to be set
*/
void set_kernelwidth(const float64_t width);
/** getter for kernel width
* @return kernel width
* throws exception if kernelwidth <=0
*/
float64_t get_kernelwidth( ) const;
/** getter for the random coefficients
* necessary for creating random fourier features compatible to the current ones
* returns values of internal members randomcoeff_additive
* and randomcoeff_multiplicative
*/
void get_randomcoefficients(float64_t ** randomcoeff_additive2,
float64_t ** randomcoeff_multiplicative2,
int32_t *dim_feature_space2, int32_t *dim_input_space2, float64_t* kernelwidth2 ) const;
/** setter for the random coefficients
* necessary for creating random fourier features compatible to the previous ones
* sets values of internal members randomcoeff_additive
* and randomcoeff_multiplicative
* simply use as input what you got from get_random_coefficients(...)
*/
void set_randomcoefficients(float64_t *randomcoeff_additive2,
float64_t * randomcoeff_multiplicative2,
const int32_t dim_feature_space2, const int32_t dim_input_space2, const float64_t kernelwidth2);
/** a setter
* @param dim the value of protected member dim_input_space
* throws a shogun exception if dim<=0
*/
void set_dim_input_space(const int32_t dim);
/** a setter
* @param dim the value of protected member dim_feature_space
* throws a shogun exception if dim<=0
*
*/
void set_dim_feature_space(const int32_t dim);
/** computes new random coefficients IF test_rfinited() evaluates to false
* test_rfinited() evaluates to TRUE if void set_randomcoefficients(...) hase been called and the values set by set_dim_input_space(...) , set_dim_feature_space(...) and set_kernelwidth(...) are consistent to the call of void set_randomcoefficients(...)
*
* throws shogun exception if dim_feature_space <= 0 or dim_input_space <= 0
*
* @return returns true if test_rfinited() evaluates to false and new coefficients are computed
* returns false if test_rfinited() evaluates to true and old random coefficients are kept which were set by a previous call to void set_randomcoefficients(...)
*
* this function is useful if you want to use apply_to_feature_vector but cannot call before it init(CFeatures *f)
*
*/
bool init_randomcoefficients();
/** a getter
* @return the set value of protected member dim_input_space
*/
int32_t get_dim_input_space() const;
/** a getter
* @return the set value of protected member dim_feature_space
*/
int32_t get_dim_feature_space() const;
/** inherited from base class
* does nothing
*/
void cleanup();
/// return the name of the preprocessor
virtual const char* get_name() const { return "RandomFourierGaussPreproc"; }
/// return a type of preprocessor
virtual EPreprocessorType get_type() const { return P_RANDOMFOURIERGAUSS; }
protected:
/**
* helper for copy constructor and assignment operator=
*/
void copy(const CRandomFourierGaussPreproc & feats); // helper for two constructors
/** dimension of input features
* width of gaussian kernel in the form of exp(-x^2 / (2.0 kernelwidth^2) ) NOTE the 2.0 and the power ^2 !
*/
float64_t kernelwidth;
/** dimension of input features
* width of gaussian kernel in the form of exp(-x^2 / (2.0 kernelwidth^2) ) NOTE the 2.0 and the power ^2 !
*/
float64_t cur_kernelwidth;
/** desired dimension of input features as set by void set_dim_input_space(const int32_t dim)
*
*/
int32_t dim_input_space;
/** actual dimension of input features as set by bool init_randomcoefficients() or void set_randomcoefficients
*
*/
int32_t cur_dim_input_space;
/** desired dimension of output features as set by void set_dim_feature_space(const int32_t dim)
*
*/
int32_t dim_feature_space;
/** actual dimension of output features as set by bool init_randomcoefficients() or void set_randomcoefficients
*
*/
int32_t cur_dim_feature_space;
/**
* tests whether rf features have already been initialized
*/
bool test_rfinited() const;
/**
* random coefficient
* length = cur_dim_feature_space
*/
float64_t* randomcoeff_additive;
/**
* random coefficient
* length = cur_dim_feature_space* cur_dim_input_space
*/
float64_t* randomcoeff_multiplicative;
};
}
#endif
|