/usr/include/shogun/preprocessor/HomogeneousKernelMap.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2012 Viktor Gal
* Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
*/
#ifndef _CHOMOGENEOUKERNELMAP__H__
#define _CHOMOGENEOUKERNELMAP__H__
#include <shogun/preprocessor/DensePreprocessor.h>
#include <shogun/features/Features.h>
#include <shogun/lib/common.h>
#include <stdio.h>
namespace shogun
{
/** @brief Type of kernel */
enum HomogeneousKernelType {
HomogeneousKernelIntersection = 0, /**< intersection kernel */
HomogeneousKernelChi2, /**< Chi2 kernel */
HomogeneousKernelJS /**< Jensen-Shannon kernel */
};
/** @brief Type of spectral windowing function */
enum HomogeneousKernelMapWindowType {
HomogeneousKernelMapWindowUniform = 0, /**< uniform window */
HomogeneousKernelMapWindowRectangular = 1, /**< rectangular window */
};
/** @brief Preprocessor HomogeneousKernelMap performs homogeneous kernel maps
* as described in
*
* A. Vedaldi and A. Zisserman.
* Efficient additive kernels via explicit feature maps.
* In PAMI, 2011
*
* The homogeneous kernel map is a finite dimensional linear
* approximation of homogeneous kernels, including the intersection,
* chi-squared, and Jensen-Shannon kernels. These kernels
* are frequently used in computer vision applications because they
* are particular suitable for data in the format of histograms, which
* encompasses many visual descriptors used.
*
* The implementation is unsafe to work with negative feature values.
*
* Implementation is based on the vlfeat library.
*
*/
class CHomogeneousKernelMap : public CDensePreprocessor<float64_t>
{
public:
/** default constructor */
CHomogeneousKernelMap();
/** constructor
*
* @param kernel kernel type
* @param wType window type (use HomogeneousKernelMapWindowRectangular if unsure)
* @param gamma the homogeneity order
* @param order the approximation order
* @param period the period (use a negative value to use the default period)
*/
CHomogeneousKernelMap(HomogeneousKernelType kernel, HomogeneousKernelMapWindowType wType,
float64_t gamma = 1.0, uint64_t order = 1, float64_t period = -1);
/** destructor */
virtual ~CHomogeneousKernelMap();
/** initialize preprocessor from features */
virtual bool init(CFeatures* features);
/** cleanup */
virtual void cleanup();
/** applies to features
* @param features features
* @return feature matrix
*/
virtual SGMatrix<float64_t> apply_to_feature_matrix(CFeatures* features);
/** applies to feature vector
* @param vector features vector
* @return transformed feature vector
*/
virtual SGVector<float64_t> apply_to_feature_vector(SGVector<float64_t> vector);
/** @return object name */
virtual const char* get_name() const { return "HomogeneousKernelMap"; }
/** @return a type of preprocessor */
virtual EPreprocessorType get_type() const { return P_HOMOGENEOUSKERNELMAP; }
/** sets kernel type
* @param k type of homogeneous kernel
*/
void set_kernel_type(HomogeneousKernelType k);
/** returns kernel type
* @return kernel type
*/
HomogeneousKernelType get_kernel_type() const;
/** sets window type
* @param w type of window
*/
void set_window_type(HomogeneousKernelMapWindowType w);
/** returns window type
* @return window type
*/
HomogeneousKernelMapWindowType get_window_type() const;
/** sets gamma
* @param g gamma value
*/
void set_gamma(float64_t g);
/** returns gamma
* @return gamma value
*/
float64_t get_gamma(float64_t g) const;
/** sets approximation order
* @param o order
*/
void set_order(uint64_t o);
/** returns approximation order
* @return approximation order
*/
uint64_t get_order() const;
/** sets period
* @param p period value
*/
void set_period(float64_t p);
/** returns period value
* @return period value
*/
float64_t get_period() const;
private:
void init ();
void register_params ();
inline float64_t get_smooth_spectrum (float64_t omega) const;
inline float64_t sinc (float64_t x) const;
inline float64_t get_spectrum (float64_t omega) const;
SGVector<float64_t> apply_to_vector(const SGVector<float64_t>& in_v) const;
private:
HomogeneousKernelType m_kernel;
HomogeneousKernelMapWindowType m_window;
float64_t m_gamma;
float64_t m_period;
uint64_t m_numSubdivisions;
float64_t m_subdivision;
uint64_t m_order;
int64_t m_minExponent;
int64_t m_maxExponent;
SGVector<float64_t> m_table;
};
}
#endif /* _CHOMOGENEOUKERNELMAP__H__ */
|