This file is indexed.

/usr/include/shogun/preprocessor/HomogeneousKernelMap.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2012 Viktor Gal
 * Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
 */

#ifndef _CHOMOGENEOUKERNELMAP__H__
#define _CHOMOGENEOUKERNELMAP__H__

#include <shogun/preprocessor/DensePreprocessor.h>
#include <shogun/features/Features.h>
#include <shogun/lib/common.h>

#include <stdio.h>

namespace shogun
{
	/** @brief Type of kernel */
	enum HomogeneousKernelType {
	  HomogeneousKernelIntersection = 0, /**< intersection kernel */
	  HomogeneousKernelChi2, /**< Chi2 kernel */
	  HomogeneousKernelJS /**< Jensen-Shannon kernel */
	};

	/** @brief Type of spectral windowing function  */
	enum HomogeneousKernelMapWindowType {
	  HomogeneousKernelMapWindowUniform = 0, /**< uniform window */
	  HomogeneousKernelMapWindowRectangular = 1, /**< rectangular window */
	};

	/** @brief Preprocessor HomogeneousKernelMap performs homogeneous kernel maps
	 * as described in
	 *
	 * A. Vedaldi and A. Zisserman.
	 * Efficient additive kernels via explicit feature maps.
	 * In PAMI, 2011
	 *
	 * The homogeneous kernel map is a finite dimensional linear
	 * approximation of homogeneous kernels, including the intersection,
	 * chi-squared, and Jensen-Shannon kernels. These kernels
	 * are frequently used in computer vision applications because they
	 * are particular suitable for data in the format of histograms, which
	 * encompasses many visual descriptors used.
	 *
	 * The implementation is unsafe to work with negative feature values.
	 *
	 * Implementation is based on the vlfeat library.
	 *
	 */
	class CHomogeneousKernelMap : public CDensePreprocessor<float64_t>
	{
		public:
			/** default constructor */
			CHomogeneousKernelMap();

			/** constructor
			 *
			 * @param kernel kernel type
			 * @param wType window type (use HomogeneousKernelMapWindowRectangular if unsure)
			 * @param gamma the homogeneity order
			 * @param order the approximation order
			 * @param period the period (use a negative value to use the default period)
			 */
			CHomogeneousKernelMap(HomogeneousKernelType kernel, HomogeneousKernelMapWindowType wType,
			                      float64_t gamma = 1.0, uint64_t order = 1, float64_t period = -1);

			/** destructor */
			virtual ~CHomogeneousKernelMap();

			/** initialize preprocessor from features */
			virtual bool init(CFeatures* features);

			/** cleanup */
			virtual void cleanup();

			/** applies to features
			 * @param features features
			 * @return feature matrix
			 */
			virtual SGMatrix<float64_t> apply_to_feature_matrix(CFeatures* features);

			/** applies to feature vector
			 * @param vector features vector
			 * @return transformed feature vector
			 */
			virtual SGVector<float64_t> apply_to_feature_vector(SGVector<float64_t> vector);

			/** @return object name */
			virtual const char* get_name() const { return "HomogeneousKernelMap"; }

			/** @return a type of preprocessor */
			virtual EPreprocessorType get_type() const { return P_HOMOGENEOUSKERNELMAP; }

			/** sets kernel type
			 * @param k type of homogeneous kernel
			 */
			void set_kernel_type(HomogeneousKernelType k);
			/** returns kernel type
			 * @return kernel type
			 */
			HomogeneousKernelType get_kernel_type() const;

			/** sets window type
			 * @param w type of window
			 */
			void set_window_type(HomogeneousKernelMapWindowType w);
			/** returns window type
			 * @return window type
			 */
			HomogeneousKernelMapWindowType get_window_type() const;

			/** sets gamma
			 * @param g gamma value
			 */
			void set_gamma(float64_t g);
			/** returns gamma
			 * @return gamma value
			 */
			float64_t get_gamma(float64_t g) const;

			/** sets approximation order
			 * @param o order
			 */
			void set_order(uint64_t o);
			/** returns approximation order
			 * @return approximation order
			 */
			uint64_t get_order() const;

			/** sets period
			 * @param p period value
			 */
			void set_period(float64_t p);
			/** returns period value
			 * @return period value
			 */
			float64_t get_period() const;

		private:
			void init ();
			void register_params ();
			inline float64_t get_smooth_spectrum (float64_t omega) const;
			inline float64_t sinc (float64_t x) const;
			inline float64_t get_spectrum (float64_t omega) const;
			SGVector<float64_t> apply_to_vector(const SGVector<float64_t>& in_v) const;

		private:
			HomogeneousKernelType m_kernel;
			HomogeneousKernelMapWindowType m_window;
			float64_t m_gamma;
			float64_t m_period;
			uint64_t m_numSubdivisions;
			float64_t m_subdivision;
			uint64_t m_order;
			int64_t m_minExponent;
			int64_t m_maxExponent;
			SGVector<float64_t> m_table;
	};
}
#endif /* _CHOMOGENEOUKERNELMAP__H__ */