/usr/include/shogun/multiclass/tree/RelaxedTree.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2012 Chiyuan Zhang
* Copyright (C) 2012 Chiyuan Zhang
*/
#ifndef RELAXEDTREE_H__
#define RELAXEDTREE_H__
#include <utility>
#include <vector>
#include <shogun/features/DenseFeatures.h>
#include <shogun/classifier/svm/LibSVM.h>
#include <shogun/multiclass/tree/TreeMachine.h>
#include <shogun/multiclass/tree/RelaxedTreeNodeData.h>
namespace shogun
{
class CBaseMulticlassMachine;
/** RelaxedTree refer to a tree-style multiclass classifier proposed in
* the following paper.
*
* Tianshi Gao and Daphne Koller. Discriminative Learning of Relaxed
* Hierarchy for Large-scale Visual Recognition. In IEEE International
* Conference on Computer Vision (ICCV), 2011. (Oral presentation)
*/
class CRelaxedTree: public CTreeMachine<RelaxedTreeNodeData>
{
public:
/** constructor */
CRelaxedTree();
/** destructor */
virtual ~CRelaxedTree();
/** get name */
virtual const char* get_name() const { return "RelaxedTree"; }
/** apply machine to data in means of multiclass classification problem */
virtual CMulticlassLabels* apply_multiclass(CFeatures* data=NULL);
/** set features
* @param feats features
*/
void set_features(CDenseFeatures<float64_t> *feats)
{
SG_REF(feats);
SG_UNREF(m_feats);
m_feats = feats;
}
/** set kernel
* @param kernel the kernel to be used
*/
virtual void set_kernel(CKernel *kernel)
{
SG_REF(kernel);
SG_UNREF(m_kernel);
m_kernel = kernel;
}
/** set labels
*
* @param lab labels
*/
virtual void set_labels(CLabels* lab)
{
CMulticlassLabels *mlab = dynamic_cast<CMulticlassLabels *>(lab);
REQUIRE(lab, "requires MulticlassLabes\n")
CMachine::set_labels(mlab);
m_num_classes = mlab->get_num_classes();
}
/** set machine for confusion matrix
* @param machine the multiclass machine for initializing the confusion matrix
*/
void set_machine_for_confusion_matrix(CBaseMulticlassMachine *machine)
{
SG_REF(machine);
SG_UNREF(m_machine_for_confusion_matrix);
m_machine_for_confusion_matrix = machine;
}
/** set SVM C: parameter for relax variables. See eq (1) in the paper.
* @param C svm C
*/
void set_svm_C(float64_t C)
{
m_svm_C = C;
}
/** get SVM C
* @return svm C
*/
float64_t get_svm_C() const
{
return m_svm_C;
}
/** set SVM epsilon
* @param epsilon SVM epsilon
*/
void set_svm_epsilon(float64_t epsilon)
{
m_svm_epsilon = epsilon;
}
/** get SVM epsilon
* @return svm epsilon
*/
float64_t get_svm_epsilon() const
{
return m_svm_epsilon;
}
/** set parameter A for controlling the trade-off of encouraging more classes
* to participating the discriminating at each level (i.e. not be ignored). See
* eq (1) in the paper.
* @param A
*/
void set_A(float64_t A)
{
m_A = A;
}
/** get parameter A
* @return A
*/
float64_t get_A() const
{
return m_A;
}
/** set parameter B for constraining the inbalance of binary colorization. See
* eq (1) in the paper.
* @param B
*/
void set_B(int32_t B)
{
m_B = B;
}
/** get parameter B
* @return B
*/
int32_t get_B() const
{
return m_B;
}
/** set max number of iteration in alternating optimization
* @param n_iter number of iterations
*/
void set_max_num_iter(int32_t n_iter)
{
m_max_num_iter = n_iter;
}
/** get max number of iteration in alternating optimization
* @return number of iterations
*/
int32_t get_max_num_iter() const
{
return m_max_num_iter;
}
/** train machine
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data).
* If flag is set, model features will be stored after training.
*
* @return whether training was successful
*/
virtual bool train(CFeatures* data=NULL)
{
return CMachine::train(data);
}
/** entry type */
typedef std::pair<std::pair<int32_t, int32_t>, float64_t> entry_t;
protected:
/** apply to one instance.
*
* Note this method is not made public so that not be called from
* external source. This is because preparation have to be done
* before calling this (mainly setup the kernel for submachines).
*/
float64_t apply_one(int32_t idx);
/** train machine
*
* @param data training data
*
* @return whether training was successful
*/
virtual bool train_machine(CFeatures* data);
/** train node */
node_t *train_node(const SGMatrix<float64_t> &conf_mat, SGVector<int32_t> classes);
/** init node */
std::vector<entry_t> init_node(const SGMatrix<float64_t> &global_conf_mat, SGVector<int32_t> classes);
/** train node with initialization */
SGVector<int32_t> train_node_with_initialization(const CRelaxedTree::entry_t &mu_entry, SGVector<int32_t> classes, CSVM *svm);
/** compute score */
float64_t compute_score(SGVector<int32_t> mu, CSVM *svm);
/** color label space */
SGVector<int32_t> color_label_space(CSVM *svm, SGVector<int32_t> classes);
/** evaluate binary model K */
SGVector<float64_t> eval_binary_model_K(CSVM *svm);
/** enforce balance constraints upper */
void enforce_balance_constraints_upper(SGVector<int32_t> &mu, SGVector<float64_t> &delta_neg, SGVector<float64_t> &delta_pos, int32_t B_prime, SGVector<float64_t>& xi_neg_class);
/** enforce balance constraints lower */
void enforce_balance_constraints_lower(SGVector<int32_t> &mu, SGVector<float64_t> &delta_neg, SGVector<float64_t> &delta_pos, int32_t B_prime, SGVector<float64_t>& xi_neg_class);
/** maximum number of iterations */
int32_t m_max_num_iter;
/** A */
float64_t m_A;
/** B */
int32_t m_B;
/** svm C */
float64_t m_svm_C;
/** svm epsilon */
float64_t m_svm_epsilon;
/** kernel */
CKernel *m_kernel;
/** features */
CDenseFeatures<float64_t> *m_feats;
/** machine for confusion matrix computation */
CBaseMulticlassMachine *m_machine_for_confusion_matrix;
/** number of classes */
int32_t m_num_classes;
};
} /* shogun */
#endif /* end of include guard: RELAXEDTREE_H__ */
|