/usr/include/shogun/multiclass/ShareBoost.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2012 Chiyuan Zhang
* Copyright (C) 2012 Chiyuan Zhang
*/
#ifndef SHAREBOOST_H__
#define SHAREBOOST_H__
#include <shogun/machine/LinearMulticlassMachine.h>
#include <shogun/multiclass/MulticlassOneVsRestStrategy.h>
#include <shogun/features/DenseFeatures.h>
#include <shogun/labels/MulticlassLabels.h>
namespace shogun
{
/** ShareBoost is a linear multiclass algorithm that efficiently
* learns a subset of features shared by all classes.
*
* See the following paper for details:
*
* Shai Shalev-Shwartz, Yonatan Wexler, Amnon Shashua. ShareBoost: Efficient
* Multiclass Learning with Feature Sharing. NIPS 2011.
*/
class CShareBoost: public CLinearMulticlassMachine
{
public:
/** default constructor */
CShareBoost();
/** constructor */
CShareBoost(CDenseFeatures<float64_t> *features, CMulticlassLabels *labs, int32_t num_nonzero_feas);
/** destructor */
virtual ~CShareBoost() {}
/** get name */
virtual const char* get_name() const { return "ShareBoost"; }
/** set number of non-zero features the algorithm should seek */
void set_num_nonzero_feas(int32_t n) { m_nonzero_feas = n; }
/** get number of non-zero features the algorithm should seek */
int32_t get_num_nonzero_feas() const { return m_nonzero_feas; }
/** assign features */
void set_features(CFeatures *f);
/** get active set */
SGVector<int32_t> get_activeset();
friend class ShareBoostOptimizer;
protected:
/** train machine */
virtual bool train_machine(CFeatures* data = NULL);
private:
void init_sb_params(); ///< init machine parameters
void compute_rho(); ///< compute the rho matrix
int32_t choose_feature(); ///< choose next feature greedily
void optimize_coefficients(); ///< optimize coefficients with gradient descent
void compute_pred(); ///< compute predictions on training data, according to W in m_machines
void compute_pred(const float64_t *W); ///< compute predictions on training data, according to given W
int32_t m_nonzero_feas; ///< number of non-zero features to seek
SGVector<int32_t> m_activeset; ///< selected features
SGMatrix<float64_t> m_fea; ///< feature matrix used during training
SGMatrix<float64_t> m_rho; ///< cache_matrix for rho
SGVector<float64_t> m_rho_norm; ///< column sum of m_rho
SGMatrix<float64_t> m_pred; ///< predictions, used in training
};
} /* shogun */
#endif /* end of include guard: SHAREBOOST_H__ */
|