This file is indexed.

/usr/include/shogun/multiclass/KNN.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2006 Christian Gehl
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Written (W) 2011 Sergey Lisitsyn
 * Written (W) 2012 Fernando José Iglesias García, cover tree support
 * Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
 */

#ifndef _KNN_H__
#define _KNN_H__

#include <stdio.h>
#include <shogun/lib/common.h>
#include <shogun/io/SGIO.h>
#include <shogun/features/Features.h>
#include <shogun/distance/Distance.h>
#include <shogun/machine/DistanceMachine.h>

namespace shogun
{

class CDistanceMachine;

/** @brief Class KNN, an implementation of the standard k-nearest neigbor
 * classifier.
 *
 * An example is classified to belong to the class of which the majority of the
 * k closest examples belong to. Formally, kNN is described as
 *
 * \f[
 *		label for x = \arg \max_{l} \sum_{i=1}^{k} [label of i-th example = l]
 * \f]
 *
 * This class provides a capability to do weighted classfication using:
 *
 * \f[
 *		label for x = \arg \max_{l} \sum_{i=1}^{k} [label of i-th example = l] q^{i},
 * \f]
 *
 * where \f$|q|<1\f$.
 *
 * To avoid ties, k should be an odd number. To define how close examples are
 * k-NN requires a CDistance object to work with (e.g., CEuclideanDistance ).
 *
 * Note that k-NN has zero training time but classification times increase
 * dramatically with the number of examples. Also note that k-NN is capable of
 * multi-class-classification. And finally, in case of k=1 classification will
 * take less time with an special optimization provided.
 */
class CKNN : public CDistanceMachine
{
	public:
		MACHINE_PROBLEM_TYPE(PT_MULTICLASS)

		/** default constructor */
		CKNN();

		/** constructor
		 *
		 * @param k k
		 * @param d distance
		 * @param trainlab labels for training
		 */
		CKNN(int32_t k, CDistance* d, CLabels* trainlab);
		virtual ~CKNN();

		/** get classifier type
		 *
		 * @return classifier type KNN
		 */
		virtual EMachineType get_classifier_type() { return CT_KNN; }

		/**
		 * for each example in the rhs features of the distance member, find the m_k
		 * nearest neighbors among the vectors in the lhs features
		 *
		 * @return matrix with indices to the nearest neighbors, the dimensions of the
		 * matrix are k rows and n columns, where n is the number of feature vectors in rhs;
		 * among the nearest neighbors, the closest are in the first row, and the furthest
		 * in the last one
		 */
		SGMatrix<index_t> nearest_neighbors();

		/** classify objects
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CMulticlassLabels* apply_multiclass(CFeatures* data=NULL);

		/// get output for example "vec_idx"
		virtual float64_t apply_one(int32_t vec_idx)
		{
			SG_ERROR("for performance reasons use apply() instead of apply(int32_t vec_idx)\n")
			return 0;
		}

		/** classify all examples for 1...k
		 *
		 */
		SGMatrix<int32_t> classify_for_multiple_k();

		/** load from file
		 *
		 * @param srcfile file to load from
		 * @return if loading was successful
		 */
		virtual bool load(FILE* srcfile);

		/** save to file
		 *
		 * @param dstfile file to save to
		 * @return if saving was successful
		 */
		virtual bool save(FILE* dstfile);

		/** set k
		 *
		 * @param k k to be set
		 */
		inline void set_k(int32_t k)
		{
			ASSERT(k>0)
			m_k=k;
		}

		/** get k
		 *
		 * @return value of k
		 */
		inline int32_t get_k()
		{
			return m_k;
		}

		/** set q
		 * @param q value
		 */
		inline void set_q(float64_t q)
		{
			ASSERT(q<=1.0 && q>0.0)
			m_q = q;
		}

		/** get q
		 * @return q parameter
		 */
		inline float64_t get_q() { return m_q; }

		/** set whether to use cover trees for fast KNN
		 * @param use_covertree
		 */
		inline void set_use_covertree(bool use_covertree)
		{
			m_use_covertree = use_covertree;
		}

		/** get whether to use cover trees for fast KNN
		 * @return use_covertree parameter
		 */
		inline bool get_use_covertree() const { return m_use_covertree; }

		/** @return object name */
		virtual const char* get_name() const { return "KNN"; }

	protected:
		/** Stores feature data of underlying model.
		 *
		 * Replaces lhs and rhs of underlying distance with copies of themselves
		 */
		virtual void store_model_features();

		/** classify all examples with nearest neighbor (k=1)
		 * @return classified labels
		 */
		virtual CMulticlassLabels* classify_NN();

		/** init distances to test examples
		 * @param data test examples
		 */
		void init_distance(CFeatures* data);

		/** train k-NN classifier
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL);

	private:
		void init();

		/** compute the histogram of class outputs of the k nearest
		 *  neighbors to a test vector and return the index of the most
		 *  frequent class
		 *
		 * @param classes vector used to store the histogram
		 * @param train_lab class indices of the training data. If the cover
		 * tree is not used, the elements are ordered by increasing distance
		 * and there are elements for each of the training vectors. If the cover
		 * tree is used, it contains just m_k elements not necessary ordered.
		 *
		 * @return index of the most frequent class, class detected by KNN
		 */
		int32_t choose_class(float64_t* classes, int32_t* train_lab);

		/** compute the histogram of class outputs of the k nearest neighbors
		 *  to a test vector, using k from 1 to m_k, and write the most frequent
		 *  class for each value of k in output, using a distance equal to step
		 *  between elements in the output array
		 *
		 * @param output return value where the most frequent classes are written
		 * @param classes vector used to store the histogram
		 * @param train_lab class indices of the training data; no matter the cover tree
		 * is used or not, the neighbors are ordered by distance to the test vector
		 * in ascending order
		 * @param step distance between elements to be written in output
		 */
		void choose_class_for_multiple_k(int32_t* output, int32_t* classes, int32_t* train_lab, int32_t step);

	protected:
		/// the k parameter in KNN
		int32_t m_k;

		/// parameter q of rank weighting
		float64_t m_q;

		/// parameter to enable cover tree support
		bool m_use_covertree;

		///	number of classes (i.e. number of values labels can take)
		int32_t m_num_classes;

		///	smallest label, i.e. -1
		int32_t m_min_label;

		/** the actual trainlabels */
		SGVector<int32_t> m_train_labels;
};

}
#endif