/usr/include/shogun/multiclass/KNN.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2006 Christian Gehl
* Written (W) 1999-2009 Soeren Sonnenburg
* Written (W) 2011 Sergey Lisitsyn
* Written (W) 2012 Fernando José Iglesias García, cover tree support
* Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
*/
#ifndef _KNN_H__
#define _KNN_H__
#include <stdio.h>
#include <shogun/lib/common.h>
#include <shogun/io/SGIO.h>
#include <shogun/features/Features.h>
#include <shogun/distance/Distance.h>
#include <shogun/machine/DistanceMachine.h>
namespace shogun
{
class CDistanceMachine;
/** @brief Class KNN, an implementation of the standard k-nearest neigbor
* classifier.
*
* An example is classified to belong to the class of which the majority of the
* k closest examples belong to. Formally, kNN is described as
*
* \f[
* label for x = \arg \max_{l} \sum_{i=1}^{k} [label of i-th example = l]
* \f]
*
* This class provides a capability to do weighted classfication using:
*
* \f[
* label for x = \arg \max_{l} \sum_{i=1}^{k} [label of i-th example = l] q^{i},
* \f]
*
* where \f$|q|<1\f$.
*
* To avoid ties, k should be an odd number. To define how close examples are
* k-NN requires a CDistance object to work with (e.g., CEuclideanDistance ).
*
* Note that k-NN has zero training time but classification times increase
* dramatically with the number of examples. Also note that k-NN is capable of
* multi-class-classification. And finally, in case of k=1 classification will
* take less time with an special optimization provided.
*/
class CKNN : public CDistanceMachine
{
public:
MACHINE_PROBLEM_TYPE(PT_MULTICLASS)
/** default constructor */
CKNN();
/** constructor
*
* @param k k
* @param d distance
* @param trainlab labels for training
*/
CKNN(int32_t k, CDistance* d, CLabels* trainlab);
virtual ~CKNN();
/** get classifier type
*
* @return classifier type KNN
*/
virtual EMachineType get_classifier_type() { return CT_KNN; }
/**
* for each example in the rhs features of the distance member, find the m_k
* nearest neighbors among the vectors in the lhs features
*
* @return matrix with indices to the nearest neighbors, the dimensions of the
* matrix are k rows and n columns, where n is the number of feature vectors in rhs;
* among the nearest neighbors, the closest are in the first row, and the furthest
* in the last one
*/
SGMatrix<index_t> nearest_neighbors();
/** classify objects
*
* @param data (test)data to be classified
* @return classified labels
*/
virtual CMulticlassLabels* apply_multiclass(CFeatures* data=NULL);
/// get output for example "vec_idx"
virtual float64_t apply_one(int32_t vec_idx)
{
SG_ERROR("for performance reasons use apply() instead of apply(int32_t vec_idx)\n")
return 0;
}
/** classify all examples for 1...k
*
*/
SGMatrix<int32_t> classify_for_multiple_k();
/** load from file
*
* @param srcfile file to load from
* @return if loading was successful
*/
virtual bool load(FILE* srcfile);
/** save to file
*
* @param dstfile file to save to
* @return if saving was successful
*/
virtual bool save(FILE* dstfile);
/** set k
*
* @param k k to be set
*/
inline void set_k(int32_t k)
{
ASSERT(k>0)
m_k=k;
}
/** get k
*
* @return value of k
*/
inline int32_t get_k()
{
return m_k;
}
/** set q
* @param q value
*/
inline void set_q(float64_t q)
{
ASSERT(q<=1.0 && q>0.0)
m_q = q;
}
/** get q
* @return q parameter
*/
inline float64_t get_q() { return m_q; }
/** set whether to use cover trees for fast KNN
* @param use_covertree
*/
inline void set_use_covertree(bool use_covertree)
{
m_use_covertree = use_covertree;
}
/** get whether to use cover trees for fast KNN
* @return use_covertree parameter
*/
inline bool get_use_covertree() const { return m_use_covertree; }
/** @return object name */
virtual const char* get_name() const { return "KNN"; }
protected:
/** Stores feature data of underlying model.
*
* Replaces lhs and rhs of underlying distance with copies of themselves
*/
virtual void store_model_features();
/** classify all examples with nearest neighbor (k=1)
* @return classified labels
*/
virtual CMulticlassLabels* classify_NN();
/** init distances to test examples
* @param data test examples
*/
void init_distance(CFeatures* data);
/** train k-NN classifier
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data)
*
* @return whether training was successful
*/
virtual bool train_machine(CFeatures* data=NULL);
private:
void init();
/** compute the histogram of class outputs of the k nearest
* neighbors to a test vector and return the index of the most
* frequent class
*
* @param classes vector used to store the histogram
* @param train_lab class indices of the training data. If the cover
* tree is not used, the elements are ordered by increasing distance
* and there are elements for each of the training vectors. If the cover
* tree is used, it contains just m_k elements not necessary ordered.
*
* @return index of the most frequent class, class detected by KNN
*/
int32_t choose_class(float64_t* classes, int32_t* train_lab);
/** compute the histogram of class outputs of the k nearest neighbors
* to a test vector, using k from 1 to m_k, and write the most frequent
* class for each value of k in output, using a distance equal to step
* between elements in the output array
*
* @param output return value where the most frequent classes are written
* @param classes vector used to store the histogram
* @param train_lab class indices of the training data; no matter the cover tree
* is used or not, the neighbors are ordered by distance to the test vector
* in ascending order
* @param step distance between elements to be written in output
*/
void choose_class_for_multiple_k(int32_t* output, int32_t* classes, int32_t* train_lab, int32_t step);
protected:
/// the k parameter in KNN
int32_t m_k;
/// parameter q of rank weighting
float64_t m_q;
/// parameter to enable cover tree support
bool m_use_covertree;
/// number of classes (i.e. number of values labels can take)
int32_t m_num_classes;
/// smallest label, i.e. -1
int32_t m_min_label;
/** the actual trainlabels */
SGVector<int32_t> m_train_labels;
};
}
#endif
|