/usr/include/shogun/mathematics/Integration.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Roman Votyakov
*
* The abscissae and weights for Gauss-Kronrod rules are taken form
* QUADPACK, which is in public domain.
* http://www.netlib.org/quadpack/
*
* See method comments which functions are adapted from GNU Octave,
* file quadgk.m: Copyright (C) 2008-2012 David Bateman under GPLv3
* http://www.gnu.org/software/octave/
*/
#ifndef _INTEGRATION_H_
#define _INTEGRATION_H_
#include <shogun/lib/config.h>
#ifdef HAVE_EIGEN3
#include <shogun/base/SGObject.h>
#include <shogun/lib/DynamicArray.h>
#include <shogun/mathematics/Math.h>
#include <shogun/mathematics/Function.h>
namespace shogun
{
/** @brief Class that contains certain methods related to numerical
* integration
*/
class CIntegration : public CSGObject
{
public:
/** numerically evaluate definite integral \f$\int_a^b f(x) dx\f$,
* where \f$f(x)\f$ - function of one variable, using adaptive
* Gauss-Kronrod quadrature formula
*
* \f[
* \int_a^b f(x)\dx \approx \sum_{i=1}^n w_i f(x_i)
* \f]
*
* where x_i and w_i - Gauss-Kronrod nodes and weights
* respectively.
*
* This function applies the Gauss-Kronrod 21-point integration
* rule for finite bounds \f$[a, b]\f$ and 15-point rule for
* infinite ones.
*
* Based on ideas form GNU Octave (file quadgk.m) under GPLv3.
*
* @param f integrable function of one variable
* @param a lower bound of the domain of integration
* @param b upper bound of the domain of integration
* @param abs_tol absolute tolerance of the quadrature
* @param rel_tol relative tolerance of the quadrature
* @param max_iter maximum number of iterations of the method
* @param sn initial number of subintervals
*
* @return approximate value of definite integral of the function
* on given domain
*/
static float64_t integrate_quadgk(CFunction* f, float64_t a,
float64_t b, float64_t abs_tol=1e-10, float64_t rel_tol=1e-5,
uint32_t max_iter=1000, index_t sn=10);
/** numerically evaluate integral of the following kind
*
* \f[
* \int_{-\infty}^{\infty}e^{-x^2}f(x)dx
* \f]
*
* using 64-point Gauss-Hermite rule
*
* \f[
* \int_{-\infty}^{\infty}e^{-x^2}f(x)dx \approx
* \sum_{i=1}^{64} w_if(x_i)
* \f]
*
* where x_i and w_i - ith node and weight for the 64-point
* Gauss-Hermite formula respectively.
*
* @param f integrable function of one variable
*
* @return approximate value of the
* integral \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
*/
static float64_t integrate_quadgh(CFunction* f);
/** get object name
*
* @return name Integration
*/
virtual const char* get_name() const { return "Integration"; }
private:
/** evaluate definite integral of a function and error on each
* subinterval using Gauss-Kronrod quadrature formula of order n
*
* Adapted form GNU Octave (file quadgk.m) under GPLv3.
*
* @param f integrable function of one variable
* @param subs subintervals of integration
* @param q approximate value of definite integral of the function
* on each subinterval
* @param err error on each subinterval
* @param n order of the Gauss-Kronrod rule
* @param xgk Gauss-Kronrod nodes
* @param wg Gauss weights
* @param wgk Gauss-Kronrod weights
*/
static void evaluate_quadgk(CFunction* f, CDynamicArray<float64_t>* subs,
CDynamicArray<float64_t>* q, CDynamicArray<float64_t>* err, index_t n,
float64_t* xgk, float64_t* wg, float64_t* wgk);
/** evaluate definite integral of a function and error on each
* subinterval using Gauss-Kronrod quadrature formula of order 15.
*
* Gauss-Kronrod nodes, Gauss weights and Gauss-Kronrod weights
* are precomputed.
*
* The abscissae and weights for 15-point rule are taken from from
* QUADPACK (file dqk15.f).
*
* @param f integrable function of one variable
* @param subs subintervals of integration
* @param q approximate value of definite integral of the function
* on each subinterval
* @param err error on each subinterval
*/
static void evaluate_quadgk15(CFunction* f, CDynamicArray<float64_t>* subs,
CDynamicArray<float64_t>* q, CDynamicArray<float64_t>* err);
/** evaluate definite integral of a function and error on each
* subinterval using Gauss-Kronrod quadrature formula of order 21.
*
* Gauss-Kronrod nodes, Gauss weights and Gauss-Kronrod weights
* are precomputed.
*
* The abscissae and weights for 21-point rule are taken from
* QUADPACK (file dqk21.f).
*
* @param f integrable function of one variable
* @param subs subintervals of integration
* @param q approximate value of definite integral of the function
* on each subinterval
* @param err error on each subinterval
*/
static void evaluate_quadgk21(CFunction* f, CDynamicArray<float64_t>* subs,
CDynamicArray<float64_t>* q, CDynamicArray<float64_t>* err);
/** evaluate integral \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
* using Gauss-Hermite quadrature formula of order n
*
* @param f integrable function of one variable
* @param n order of the Gauss-Hermite rule
* @param xh Gauss-Hermite nodes
* @param wh Gauss-Hermite weights
*
* @return approximate value of the integral
* \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
*/
static float64_t evaluate_quadgh(CFunction* f, index_t n, float64_t* xh,
float64_t* wh);
/** evaluate integral \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
* using Gauss-Hermite quadrature formula of order 64.
*
* Gauss-Hermite nodes \f$x_i\f$ and weights \f$w_i\f$ are
* precomputed: \f$x_i\f$ - the i-th zero of \f$H_n(x)\f$,
* \f$w_i=\frac{2^{n-1}n!\sqrt{\pi}}{n^2[H_{n-1}(x_i)]^2}\f$,
* where \f$H_n(x)\f$ is physicists' Hermite polynomials.
*
* @param f integrable function of one variable
*
* @return approximate value of the integral
* \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
*/
static float64_t evaluate_quadgh64(CFunction* f);
};
}
#endif /* HAVE_EIGEN3 */
#endif /* _INTEGRATION_H_ */
|