This file is indexed.

/usr/include/shogun/mathematics/Integration.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Roman Votyakov
 *
 * The abscissae and weights for Gauss-Kronrod rules are taken form
 * QUADPACK, which is in public domain.
 * http://www.netlib.org/quadpack/
 *
 * See method comments which functions are adapted from GNU Octave,
 * file quadgk.m: Copyright (C) 2008-2012 David Bateman under GPLv3
 * http://www.gnu.org/software/octave/
 */

#ifndef _INTEGRATION_H_
#define _INTEGRATION_H_

#include <shogun/lib/config.h>

#ifdef HAVE_EIGEN3

#include <shogun/base/SGObject.h>
#include <shogun/lib/DynamicArray.h>
#include <shogun/mathematics/Math.h>
#include <shogun/mathematics/Function.h>

namespace shogun
{

/** @brief Class that contains certain methods related to numerical
 * integration
 */
class CIntegration : public CSGObject
{
public:
	/** numerically evaluate definite integral \f$\int_a^b f(x) dx\f$,
	 * where \f$f(x)\f$ - function of one variable, using adaptive
	 * Gauss-Kronrod quadrature formula
	 *
	 * \f[
	 * \int_a^b f(x)\dx \approx \sum_{i=1}^n w_i f(x_i)
	 * \f]
	 *
	 * where x_i and w_i - Gauss-Kronrod nodes and weights
	 * respectively.
	 *
	 * This function applies the Gauss-Kronrod 21-point integration
	 * rule for finite bounds \f$[a, b]\f$ and 15-point rule for
	 * infinite ones.
	 *
	 * Based on ideas form GNU Octave (file quadgk.m) under GPLv3.
	 *
	 * @param f integrable function of one variable
	 * @param a lower bound of the domain of integration
	 * @param b upper bound of the domain of integration
	 * @param abs_tol absolute tolerance of the quadrature
	 * @param rel_tol relative tolerance of the quadrature
	 * @param max_iter maximum number of iterations of the method
	 * @param sn initial number of subintervals
	 *
	 * @return approximate value of definite integral of the function
	 * on given domain
	 */
	static float64_t integrate_quadgk(CFunction* f, float64_t a,
			float64_t b, float64_t abs_tol=1e-10, float64_t rel_tol=1e-5,
			uint32_t max_iter=1000, index_t sn=10);

	/** numerically evaluate integral of the following kind
	 *
	 * \f[
	 * \int_{-\infty}^{\infty}e^{-x^2}f(x)dx
	 * \f]
	 *
	 * using 64-point Gauss-Hermite rule
	 *
	 * \f[
	 * \int_{-\infty}^{\infty}e^{-x^2}f(x)dx \approx
	 * \sum_{i=1}^{64} w_if(x_i)
	 * \f]
	 *
	 * where x_i and w_i - ith node and weight for the 64-point
	 * Gauss-Hermite formula respectively.
	 *
	 * @param f integrable function of one variable
	 *
	 * @return approximate value of the
	 * integral \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
	 */
	static float64_t integrate_quadgh(CFunction* f);

	/** get object name
	 *
	 * @return name Integration
	 */
	virtual const char* get_name() const { return "Integration"; }

private:
	/** evaluate definite integral of a function and error on each
	 * subinterval using Gauss-Kronrod quadrature formula of order n
	 *
	 * Adapted form GNU Octave (file quadgk.m) under GPLv3.
	 *
	 * @param f integrable function of one variable
	 * @param subs subintervals of integration
	 * @param q approximate value of definite integral of the function
	 * on each subinterval
	 * @param err error on each subinterval
	 * @param n order of the Gauss-Kronrod rule
	 * @param xgk Gauss-Kronrod nodes
	 * @param wg Gauss weights
	 * @param wgk Gauss-Kronrod weights
	 */
	static void evaluate_quadgk(CFunction* f, CDynamicArray<float64_t>* subs,
			CDynamicArray<float64_t>* q, CDynamicArray<float64_t>* err, index_t n,
			float64_t* xgk, float64_t* wg, float64_t* wgk);

	/** evaluate definite integral of a function and error on each
	 * subinterval using Gauss-Kronrod quadrature formula of order 15.
	 *
	 * Gauss-Kronrod nodes, Gauss weights and Gauss-Kronrod weights
	 * are precomputed.
	 *
	 * The abscissae and weights for 15-point rule are taken from from
	 * QUADPACK (file dqk15.f).
	 *
	 * @param f integrable function of one variable
	 * @param subs subintervals of integration
	 * @param q approximate value of definite integral of the function
	 * on each subinterval
	 * @param err error on each subinterval
	 */
	static void evaluate_quadgk15(CFunction* f, CDynamicArray<float64_t>* subs,
			CDynamicArray<float64_t>* q, CDynamicArray<float64_t>* err);

	/** evaluate definite integral of a function and error on each
	 * subinterval using Gauss-Kronrod quadrature formula of order 21.
	 *
	 * Gauss-Kronrod nodes, Gauss weights and Gauss-Kronrod weights
	 * are precomputed.
	 *
	 * The abscissae and weights for 21-point rule are taken from
	 * QUADPACK (file dqk21.f).
	 *
	 * @param f integrable function of one variable
	 * @param subs subintervals of integration
	 * @param q approximate value of definite integral of the function
	 * on each subinterval
	 * @param err error on each subinterval
	 */
	static void evaluate_quadgk21(CFunction* f, CDynamicArray<float64_t>* subs,
			CDynamicArray<float64_t>* q, CDynamicArray<float64_t>* err);

	/** evaluate integral \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
	 * using Gauss-Hermite quadrature formula of order n
	 *
	 * @param f integrable function of one variable
	 * @param n order of the Gauss-Hermite rule
	 * @param xh Gauss-Hermite nodes
	 * @param wh Gauss-Hermite weights
	 *
	 * @return approximate value of the integral
	 * \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
	 */
	static float64_t evaluate_quadgh(CFunction* f, index_t n, float64_t* xh,
			float64_t* wh);

	/** evaluate integral \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
	 * using Gauss-Hermite quadrature formula of order 64.
	 *
	 * Gauss-Hermite nodes \f$x_i\f$ and weights \f$w_i\f$ are
	 * precomputed: \f$x_i\f$ - the i-th zero of \f$H_n(x)\f$,
	 * \f$w_i=\frac{2^{n-1}n!\sqrt{\pi}}{n^2[H_{n-1}(x_i)]^2}\f$,
	 * where \f$H_n(x)\f$ is physicists' Hermite polynomials.
	 *
	 * @param f integrable function of one variable
	 *
	 * @return approximate value of the integral
	 * \f$\int_{-\infty}^{\infty}e^{-x^2}f(x)dx\f$
	 */
	static float64_t evaluate_quadgh64(CFunction* f);
};
}
#endif /* HAVE_EIGEN3 */
#endif /* _INTEGRATION_H_ */