/usr/include/shogun/machine/gp/LogitLikelihood.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Roman Votyakov
*/
#ifndef _LOGITLIKELIHOOD_H_
#define _LOGITLIKELIHOOD_H_
#include <shogun/lib/config.h>
#ifdef HAVE_EIGEN3
#include <shogun/machine/gp/LikelihoodModel.h>
namespace shogun
{
/** @brief Class that models Logit likelihood.
*
* \f[
* p(y|f) = \prod_{i=1}^n \frac{1}{1+exp(-y_i*f_i)}
* \f]
*/
class CLogitLikelihood : public CLikelihoodModel
{
public:
/** default constructor */
CLogitLikelihood();
virtual ~CLogitLikelihood();
/** returns the name of the likelihood model
*
* @return name LogitLikelihood
*/
virtual const char* get_name() const { return "LogitLikelihood"; }
/** returns mean of the predictive marginal \f$p(y_*|X,y,x_*)\f$.
*
* NOTE: if lab equals to NULL, then each \f$y_*\f$ equals to one.
*
* @param mu posterior mean of a Gaussian distribution
* \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
* posterior marginal \f$p(f_*|X,y,x_*)\f$
* @param s2 posterior variance of a Gaussian distribution
* \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
* posterior marginal \f$p(f_*|X,y,x_*)\f$
* @param lab labels \f$y_*\f$
*
* @return final means evaluated by likelihood function
*/
virtual SGVector<float64_t> get_predictive_means(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab=NULL) const;
/** returns variance of the predictive marginal \f$p(y_*|X,y,x_*)\f$.
*
* NOTE: if lab equals to NULL, then each \f$y_*\f$ equals to one.
*
* @param mu posterior mean of a Gaussian distribution
* \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
* posterior marginal \f$p(f_*|X,y,x_*)\f$
* @param s2 posterior variance of a Gaussian distribution
* \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
* posterior marginal \f$p(f_*|X,y,x_*)\f$
* @param lab labels \f$y_*\f$
*
* @return final variances evaluated by likelihood function
*/
virtual SGVector<float64_t> get_predictive_variances(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab=NULL) const;
/** get model type
*
* @return model type Logit
*/
virtual ELikelihoodModelType get_model_type() const { return LT_LOGIT; }
/** returns the logarithm of the point-wise likelihood \f$log(p(y_i|f_i))\f$
* for each label \f$y_i\f$.
*
* One can evaluate log-likelihood like: \f$log(p(y|f)) = \sum_{i=1}^{n}
* log(p(y_i|f_i))\f$
*
* @param lab labels \f$y_i\f$
* @param func values of the function \f$f_i\f$
*
* @return logarithm of the point-wise likelihood
*/
virtual SGVector<float64_t> get_log_probability_f(const CLabels* lab,
SGVector<float64_t> func) const;
/** get derivative of log likelihood \f$log(P(y|f))\f$ with respect to
* function location \f$f\f$
*
* @param lab labels used
* @param func function location
* @param i index, choices are 1, 2, and 3 for first, second, and third
* derivatives respectively
*
* @return derivative
*/
virtual SGVector<float64_t> get_log_probability_derivative_f(
const CLabels* lab, SGVector<float64_t> func, index_t i) const;
/** returns the zeroth moment of a given (unnormalized) probability
* distribution:
*
* \f[
* log(Z_i) = log\left(\int p(y_i|f_i) \mathcal{N}(f_i|\mu,\sigma^2)
* df_i\right)
* \f]
*
* for each \f$f_i\f$.
*
* @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param lab labels \f$y_i\f$
*
* @return log zeroth moments \f$log(Z_i)\f$
*/
virtual SGVector<float64_t> get_log_zeroth_moments(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab) const;
/** returns the first moment of a given (unnormalized) probability
* distribution \f$q(f_i) = Z_i^-1
* p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\f$, where \f$ Z_i=\int
* p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\f$.
*
* This method is useful for EP local likelihood approximation.
*
* @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param lab labels \f$y_i\f$
* @param i index i
*
* @return first moment of \f$q(f_i)\f$
*/
virtual float64_t get_first_moment(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab, index_t i) const;
/** returns the second moment of a given (unnormalized) probability
* distribution \f$q(f_i) = Z_i^-1
* p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\f$, where \f$ Z_i=\int
* p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\f$.
*
* This method is useful for EP local likelihood approximation.
*
* @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param lab labels \f$y_i\f$
* @param i index i
*
* @return the second moment of \f$q(f_i)\f$
*/
virtual float64_t get_second_moment(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab, index_t i) const;
/** return whether logit likelihood function supports binary classification
*
* @return true
*/
virtual bool supports_binary() const { return true; }
};
}
#endif /* HAVE_EIGEN3 */
#endif /* _LOGITLIKELIHOOD_H_ */
|