/usr/include/shogun/machine/gp/LaplacianInferenceMethod.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Roman Votyakov
* Copyright (C) 2012 Jacob Walker
* Copyright (C) 2013 Roman Votyakov
*
* Code adapted from Gaussian Process Machine Learning Toolbox
* http://www.gaussianprocess.org/gpml/code/matlab/doc/
*/
#ifndef CLAPLACIANINFERENCEMETHOD_H_
#define CLAPLACIANINFERENCEMETHOD_H_
#include <shogun/lib/config.h>
#ifdef HAVE_EIGEN3
#include <shogun/machine/gp/InferenceMethod.h>
namespace shogun
{
/** @brief The Laplace approximation inference method class.
*
* This inference method approximates the posterior likelihood function by using
* Laplace's method. Here, we compute a Gaussian approximation to the posterior
* via a Taylor expansion around the maximum of the posterior likelihood
* function.
*
* For more details, see "Bayesian Classification with Gaussian Processes" by
* Christopher K.I Williams and David Barber, published 1998 in the IEEE
* Transactions on Pattern Analysis and Machine Intelligence, Volume 20, Number
* 12, Pages 1342-1351.
*
* This specific implementation was adapted from the infLaplace.m file in the
* GPML toolbox.
*/
class CLaplacianInferenceMethod: public CInferenceMethod
{
public:
/** default constructor */
CLaplacianInferenceMethod();
/** constructor
*
* @param kernel covariance function
* @param features features to use in inference
* @param mean mean function
* @param labels labels of the features
* @param model Likelihood model to use
*/
CLaplacianInferenceMethod(CKernel* kernel, CFeatures* features,
CMeanFunction* mean, CLabels* labels, CLikelihoodModel* model);
virtual ~CLaplacianInferenceMethod();
/** return what type of inference we are
*
* @return inference type LAPLACIAN
*/
virtual EInferenceType get_inference_type() const { return INF_LAPLACIAN; }
/** returns the name of the inference method
*
* @return name Laplacian
*/
virtual const char* get_name() const { return "LaplacianInferenceMethod"; }
/** get negative log marginal likelihood
*
* @return the negative log of the marginal likelihood function:
*
* \f[
* -log(p(y|X, \theta))
* \f]
*
* where \f$y\f$ are the labels, \f$X\f$ are the features, and
* \f$\theta\f$ represent hyperparameters.
*/
virtual float64_t get_negative_log_marginal_likelihood();
/** get alpha vector
*
* @return vector to compute posterior mean of Gaussian Process:
*
* \f[
* \mu = K\alpha
* \f]
*
* where \f$\mu\f$ is the mean and \f$K\f$ is the prior covariance matrix.
*/
virtual SGVector<float64_t> get_alpha();
/** get Cholesky decomposition matrix
*
* @return Cholesky decomposition of matrix:
*
* \f[
* L = Cholesky(W^{\frac{1}{2}}*K*W^{\frac{1}{2}}+I)
* \f]
*
* where \f$K\f$ is the prior covariance matrix, \f$sW\f$ is the vector
* returned by get_diagonal_vector(), and \f$I\f$ is the identity matrix.
*/
virtual SGMatrix<float64_t> get_cholesky();
/** get diagonal vector
*
* @return diagonal of matrix used to calculate posterior covariance matrix:
*
* \f[
* Cov = (K^{-1}+sW^{2})^{-1}
* \f]
*
* where \f$Cov\f$ is the posterior covariance matrix, \f$K\f$ is the prior
* covariance matrix, and \f$sW\f$ is the diagonal vector.
*/
virtual SGVector<float64_t> get_diagonal_vector();
/** returns mean vector \f$\mu\f$ of the Gaussian distribution
* \f$\mathcal{N}(\mu,\Sigma)\f$, which is an approximation to the
* posterior:
*
* \f[
* p(f|y) \approx q(f|y) = \mathcal{N}(f|\mu,\Sigma)
* \f]
*
* Mean vector \f$\mu\f$ is evaluated using Newton's method.
*
* @return mean vector
*/
virtual SGVector<float64_t> get_posterior_mean();
/** returns covariance matrix \f$\Sigma=(K^{-1}+W)^{-1}\f$ of the Gaussian
* distribution \f$\mathcal{N}(\mu,\Sigma)\f$, which is an approximation to
* the posterior:
*
* \f[
* p(f|y) \approx q(f|y) = \mathcal{N}(f|\mu,\Sigma)
* \f]
*
* Covariance matrix is evaluated using matrix inversion lemma:
*
* \f[
* (K^{-1}+W)^{-1} = K - KW^{\frac{1}{2}}B^{-1}W^{\frac{1}{2}}K
* \f]
*
* where \f$B=(W^{frac{1}{2}}*K*W^{frac{1}{2}}+I)\f$.
*
* @return covariance matrix
*/
virtual SGMatrix<float64_t> get_posterior_covariance();
/** get tolerance for newton iterations
*
* @return tolerance for newton iterations
*/
virtual float64_t get_newton_tolerance() { return m_tolerance; }
/** set tolerance for newton iterations
*
* @param tol tolerance for newton iterations to set
*/
virtual void set_newton_tolerance(float64_t tol) { m_tolerance=tol; }
/** get max Newton iterations
*
* @return max Newton iterations
*/
virtual int32_t get_newton_iterations() { return m_iter; }
/** set max Newton iterations
*
* @param iter max Newton iterations
*/
virtual void set_newton_iterations(int32_t iter) { m_iter=iter; }
/** get tolerance for Brent's minimization method
*
* @return tolerance for Brent's minimization method
*/
virtual float64_t get_minimization_tolerance() { return m_opt_tolerance; }
/** set tolerance for Brent's minimization method
*
* @param tol tolerance for Brent's minimization method
*/
virtual void set_minimization_tolerance(float64_t tol) { m_opt_tolerance=tol; }
/** get maximum for Brent's minimization method
*
* @return maximum for Brent's minimization method
*/
virtual float64_t get_minimization_max() { return m_opt_max; }
/** set maximum for Brent's minimization method
*
* @param max maximum for Brent's minimization method
*/
virtual void set_minimization_max(float64_t max) { m_opt_max=max; }
/**
* @return whether combination of Laplace approximation inference method and
* given likelihood function supports regression
*/
virtual bool supports_regression() const
{
check_members();
return m_model->supports_regression();
}
/**
* @return whether combination of Laplace approximation inference method and
* given likelihood function supports binary classification
*/
virtual bool supports_binary() const
{
check_members();
return m_model->supports_binary();
}
/** update data all matrices */
virtual void update();
protected:
/** update alpha matrix */
virtual void update_alpha();
/** update cholesky matrix */
virtual void update_chol();
/** update covariance matrix of the approximation to the posterior */
virtual void update_approx_cov();
/** update matrices which are required to compute negative log marginal
* likelihood derivatives wrt hyperparameter
*/
virtual void update_deriv();
/** returns derivative of negative log marginal likelihood wrt parameter of
* CInferenceMethod class
*
* @param param parameter of CInferenceMethod class
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_inference_method(
const TParameter* param);
/** returns derivative of negative log marginal likelihood wrt parameter of
* likelihood model
*
* @param param parameter of given likelihood model
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_likelihood_model(
const TParameter* param);
/** returns derivative of negative log marginal likelihood wrt kernel's
* parameter
*
* @param param parameter of given kernel
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_kernel(
const TParameter* param);
/** returns derivative of negative log marginal likelihood wrt mean
* function's parameter
*
* @param param parameter of given mean function
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_mean(
const TParameter* param);
private:
void init();
private:
/** amount of tolerance for Newton's iterations */
float64_t m_tolerance;
/** max Newton's iterations */
index_t m_iter;
/** amount of tolerance for Brent's minimization method */
float64_t m_opt_tolerance;
/** max iterations for Brent's minimization method */
float64_t m_opt_max;
/** mean vector of the approximation to the posterior */
SGVector<float64_t> m_mu;
/** covariance matrix of the approximation to the posterior */
SGMatrix<float64_t> m_Sigma;
/** noise matrix */
SGVector<float64_t> W;
/** square root of W */
SGVector<float64_t> sW;
/** derivative of log likelihood with respect to function location */
SGVector<float64_t> dlp;
/** second derivative of log likelihood with respect to function location */
SGVector<float64_t> d2lp;
/** third derivative of log likelihood with respect to function location */
SGVector<float64_t> d3lp;
SGVector<float64_t> m_dfhat;
SGMatrix<float64_t> m_Z;
SGVector<float64_t> m_g;
};
}
#endif /* HAVE_EIGEN3 */
#endif /* CLAPLACIANINFERENCEMETHOD_H_ */
|