This file is indexed.

/usr/include/shogun/machine/gp/ExactInferenceMethod.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Roman Votyakov
 * Copyright (C) 2012 Jacob Walker
 * Copyright (C) 2013 Roman Votyakov
 */

#ifndef CEXACTINFERENCEMETHOD_H_
#define CEXACTINFERENCEMETHOD_H_

#include <shogun/lib/config.h>

#ifdef HAVE_EIGEN3

#include <shogun/machine/gp/InferenceMethod.h>

namespace shogun
{

/** @brief The Gaussian exact form inference method class.
 *
 * This inference method computes the Gaussian Method exactly using matrix
 * equations.
 *
 * \f[
 * L = cholesky(K + \sigma^{2}I)
 * \f]
 *
 * \f$L\f$ is the cholesky decomposition of \f$K\f$, the covariance matrix, plus
 * a diagonal matrix with entries \f$\sigma^{2}\f$, the observation noise.
 *
 * \f[
 * \boldsymbol{\alpha} = L^{T} \backslash(L \backslash \boldsymbol{y}})
 * \f]
 *
 * where \f$L\f$ is the matrix mentioned above, \f$\boldsymbol{y}\f$ are the
 * labels, and \f$\backslash\f$ is an operator (\f$x = A \backslash B\f$ means
 * \f$Ax=B\f$.)
 *
 * NOTE: The Gaussian Likelihood Function must be used for this inference
 * method.
 */
class CExactInferenceMethod: public CInferenceMethod
{
public:
	/** default constructor */
	CExactInferenceMethod();

	/** constructor
	 *
	 * @param kernel covariance function
	 * @param features features to use in inference
	 * @param mean mean function to use
	 * @param labels labels of the features
	 * @param model likelihood model to use
	 */
	CExactInferenceMethod(CKernel* kernel, CFeatures* features,
			CMeanFunction* mean, CLabels* labels, CLikelihoodModel* model);

	virtual ~CExactInferenceMethod();

	/** return what type of inference we are
	 *
	 * @return inference type EXACT
	 */
	virtual EInferenceType get_inference_type() const { return INF_EXACT; }

	/** returns the name of the inference method
	 *
	 * @return name Exact
	 */
	virtual const char* get_name() const { return "ExactInferenceMethod"; }

	/** get negative log marginal likelihood
	 *
	 * @return the negative log of the marginal likelihood function:
	 *
	 * \f[
	 * -log(p(y|X, \theta))
	 * \f]
	 *
	 * where \f$y\f$ are the labels, \f$X\f$ are the features, and \f$\theta\f$
	 * represent hyperparameters.
	 */
	virtual float64_t get_negative_log_marginal_likelihood();

	/** get alpha vector
	 *
	 * @return vector to compute posterior mean of Gaussian Process:
	 *
	 * \f[
	 * \mu = K\alpha
	 * \f]
	 *
	 * where \f$\mu\f$ is the mean and \f$K\f$ is the prior covariance matrix.
	 */
	virtual SGVector<float64_t> get_alpha();

	/** get Cholesky decomposition matrix
	 *
	 * @return Cholesky decomposition of matrix:
	 *
	 * \f[
	 * L = Cholesky(sW*K*sW+I)
	 * \f]
	 *
	 * where \f$K\f$ is the prior covariance matrix, \f$sW\f$ is the vector
	 * returned by get_diagonal_vector(), and \f$I\f$ is the identity matrix.
	 */
	virtual SGMatrix<float64_t> get_cholesky();

	/** get diagonal vector
	 *
	 * @return diagonal of matrix used to calculate posterior covariance matrix
	 *
	 * \f[
	 * Cov = (K^{-1}+sW^{2})^{-1}
	 * \f]
	 *
	 * where \f$Cov\f$ is the posterior covariance matrix, \f$K\f$ is the prior
	 * covariance matrix, and \f$sW\f$ is the diagonal vector.
	 */
	virtual SGVector<float64_t> get_diagonal_vector();

	/** returns mean vector \f$\mu\f$ of the posterior Gaussian distribution
	 * \f$\mathcal{N}(\mu,\Sigma)\f$
	 *
	 * \f[
	 * p(f|y) = \mathcal{N}(\mu,\Sigma)
	 * \f]
	 *
	 * @return mean vector
	 */
	virtual SGVector<float64_t> get_posterior_mean();

	/** returns covariance matrix \f$\Sigma\f$ of the posterior Gaussian
	 * distribution \f$\mathcal{N}(\mu,\Sigma)\f$
	 *
	 * \f[
	 * p(f|y) = \mathcal{N}(\mu,\Sigma)
	 * \f]
	 *
	 * @return covariance matrix
	 */
	virtual SGMatrix<float64_t> get_posterior_covariance();

	/**
	 * @return whether combination of exact inference method and given
	 * likelihood function supports regression
	 */
	virtual bool supports_regression() const
	{
		check_members();
		return m_model->supports_regression();
	}

	/** update all matrices */
	virtual void update();

protected:
	/** check if members of object are valid for inference */
	virtual void check_members() const;

	/** update alpha matrix */
	virtual void update_alpha();

	/** update Cholesky matrix */
	virtual void update_chol();

	/** update mean vector of the posterior Gaussian */
	virtual void update_mean();

	/** update covariance matrix of the posterior Gaussian */
	virtual void update_cov();

	/** update matrices which are required to compute negative log marginal
	 * likelihood derivatives wrt hyperparameter
	 */
	virtual void update_deriv();

	/** returns derivative of negative log marginal likelihood wrt parameter of
	 * CInferenceMethod class
	 *
	 * @param param parameter of CInferenceMethod class
	 *
	 * @return derivative of negative log marginal likelihood
	 */
	virtual SGVector<float64_t> get_derivative_wrt_inference_method(
			const TParameter* param);

	/** returns derivative of negative log marginal likelihood wrt parameter of
	 * likelihood model
	 *
	 * @param param parameter of given likelihood model
	 *
	 * @return derivative of negative log marginal likelihood
	 */
	virtual SGVector<float64_t> get_derivative_wrt_likelihood_model(
			const TParameter* param);

	/** returns derivative of negative log marginal likelihood wrt kernel's
	 * parameter
	 *
	 * @param param parameter of given kernel
	 *
	 * @return derivative of negative log marginal likelihood
	 */
	virtual SGVector<float64_t> get_derivative_wrt_kernel(
			const TParameter* param);

	/** returns derivative of negative log marginal likelihood wrt mean
	 * function's parameter
	 *
	 * @param param parameter of given mean function
	 *
	 * @return derivative of negative log marginal likelihood
	 */
	virtual SGVector<float64_t> get_derivative_wrt_mean(
			const TParameter* param);

private:
	/** covariance matrix of the the posterior Gaussian distribution */
	SGMatrix<float64_t> m_Sigma;

	/** mean vector of the the posterior Gaussian distribution */
	SGVector<float64_t> m_mu;

	SGMatrix<float64_t> m_Q;
};
}
#endif /* HAVE_EIGEN3 */
#endif /* CEXACTINFERENCEMETHOD_H_ */