This file is indexed.

/usr/include/shogun/machine/Machine.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Written (W) 2011-2012 Heiko Strathmann
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _MACHINE_H__
#define _MACHINE_H__

#include <shogun/lib/common.h>
#include <shogun/base/SGObject.h>
#include <shogun/labels/Labels.h>
#include <shogun/labels/BinaryLabels.h>
#include <shogun/labels/RegressionLabels.h>
#include <shogun/labels/MulticlassLabels.h>
#include <shogun/labels/StructuredLabels.h>
#include <shogun/labels/LatentLabels.h>
#include <shogun/features/Features.h>

namespace shogun
{

class CFeatures;
class CLabels;
class CMath;

/** classifier type */
enum EMachineType
{
	CT_NONE = 0,
	CT_LIGHT = 10,
	CT_LIGHTONECLASS = 11,
	CT_LIBSVM = 20,
	CT_LIBSVMONECLASS=30,
	CT_LIBSVMMULTICLASS=40,
	CT_MPD = 50,
	CT_GPBT = 60,
	CT_CPLEXSVM = 70,
	CT_PERCEPTRON = 80,
	CT_KERNELPERCEPTRON = 90,
	CT_LDA = 100,
	CT_LPM = 110,
	CT_LPBOOST = 120,
	CT_KNN = 130,
	CT_SVMLIN=140,
	CT_KERNELRIDGEREGRESSION = 150,
	CT_GNPPSVM = 160,
	CT_GMNPSVM = 170,
	CT_SVMPERF = 200,
	CT_LIBSVR = 210,
	CT_SVRLIGHT = 220,
	CT_LIBLINEAR = 230,
	CT_KMEANS = 240,
	CT_HIERARCHICAL = 250,
	CT_SVMOCAS = 260,
	CT_WDSVMOCAS = 270,
	CT_SVMSGD = 280,
	CT_MKLMULTICLASS = 290,
	CT_MKLCLASSIFICATION = 300,
	CT_MKLONECLASS = 310,
	CT_MKLREGRESSION = 320,
	CT_SCATTERSVM = 330,
	CT_DASVM = 340,
	CT_LARANK = 350,
	CT_DASVMLINEAR = 360,
	CT_GAUSSIANNAIVEBAYES = 370,
	CT_AVERAGEDPERCEPTRON = 380,
	CT_SGDQN = 390,
	CT_CONJUGATEINDEX = 400,
	CT_LINEARRIDGEREGRESSION = 410,
	CT_LEASTSQUARESREGRESSION = 420,
	CT_QDA = 430,
	CT_NEWTONSVM = 440,
	CT_GAUSSIANPROCESSREGRESSION = 450,
	CT_LARS = 460,
	CT_MULTICLASS = 470,
	CT_DIRECTORLINEAR = 480,
	CT_DIRECTORKERNEL = 490,
	CT_LIBQPSOSVM = 500,
	CT_PRIMALMOSEKSOSVM = 510,
	CT_CCSOSVM = 520,
	CT_GAUSSIANPROCESSBINARY = 530,
	CT_GAUSSIANPROCESSMULTICLASS = 540,
	CT_STOCHASTICSOSVM = 550,
	CT_BAGGING
};

/** solver type */
enum ESolverType
{
	ST_AUTO=0,
	ST_CPLEX=1,
	ST_GLPK=2,
	ST_NEWTON=3,
	ST_DIRECT=4,
	ST_ELASTICNET=5,
	ST_BLOCK_NORM=6
};

/** problem type */
enum EProblemType
{
	PT_BINARY = 0,
	PT_REGRESSION = 1,
	PT_MULTICLASS = 2,
	PT_STRUCTURED = 3,
	PT_LATENT = 4
};

#define MACHINE_PROBLEM_TYPE(PT) \
	/** returns default problem type machine solves \
	 * @return problem type\
	 */ \
	virtual EProblemType get_machine_problem_type() const { return PT; }

/** @brief A generic learning machine interface.
 *
 * A machine takes as input CFeatures and CLabels (by default).
 * Later subclasses may specialize the machine to e.g. require labels
 * and a kernel or labels and (real-valued) features.
 *
 * A machine needs to override the train() function for training,
 * the functions apply(idx) (optionally apply() to predict on the
 * whole set of examples) and the load and save routines.
 *
 * Machines may support locking. This means that given some data, the machine
 * can be locked on this data to speed up computations. E.g. a kernel machine
 * may precompute its kernel. Only train_locked and apply_locked are available
 * when locked. There are methods for checking whether a machine supports
 * locking.
 *
 */
class CMachine : public CSGObject
{
	public:
		/** constructor */
		CMachine();

		/** destructor */
		virtual ~CMachine();

		/** train machine
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data).
		 * If flag is set, model features will be stored after training.
		 *
		 * @return whether training was successful
		 */
		virtual bool train(CFeatures* data=NULL);

		/** apply machine to data
		 * if data is not specified apply to the current features
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CLabels* apply(CFeatures* data=NULL);

		/** apply machine to data in means of binary classification problem */
		virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);
		/** apply machine to data in means of regression problem */
		virtual CRegressionLabels* apply_regression(CFeatures* data=NULL);
		/** apply machine to data in means of multiclass classification problem */
		virtual CMulticlassLabels* apply_multiclass(CFeatures* data=NULL);
		/** apply machine to data in means of SO classification problem */
		virtual CStructuredLabels* apply_structured(CFeatures* data=NULL);
		/** apply machine to data in means of latent problem */
		virtual CLatentLabels* apply_latent(CFeatures* data=NULL);

		/** set labels
		 *
		 * @param lab labels
		 */
		virtual void set_labels(CLabels* lab);

		/** get labels
		 *
		 * @return labels
		 */
		virtual CLabels* get_labels();

		/** set maximum training time
		 *
		 * @param t maximimum training time
		 */
		void set_max_train_time(float64_t t);

		/** get maximum training time
		 *
		 * @return maximum training time
		 */
		float64_t get_max_train_time();

		/** get classifier type
		 *
		 * @return classifier type NONE
		 */
		virtual EMachineType get_classifier_type();

		/** set solver type
		 *
		 * @param st solver type
		 */
		void set_solver_type(ESolverType st);

		/** get solver type
		 *
		 * @return solver
		 */
		ESolverType get_solver_type();

		/** Setter for store-model-features-after-training flag
		 *
		 * @param store_model whether model should be stored after
		 * training
		 */
		virtual void set_store_model_features(bool store_model);

		/** Trains a locked machine on a set of indices. Error if machine is
		 * not locked
		 *
		 * NOT IMPLEMENTED
		 *
		 * @param indices index vector (of locked features) that is used for training
		 * @return whether training was successful
		 */
		virtual bool train_locked(SGVector<index_t> indices)
		{
			SG_ERROR("train_locked(SGVector<index_t>) is not yet implemented "
					"for %s\n", get_name());
			return false;
		}

		/** applies to one vector */
		virtual float64_t apply_one(int32_t i)
		{
			SG_NOTIMPLEMENTED
			return 0.0;
		}

		/** Applies a locked machine on a set of indices. Error if machine is
		 * not locked
		 *
		 * @param indices index vector (of locked features) that is predicted
		 */
		virtual CLabels* apply_locked(SGVector<index_t> indices);

		/** applies a locked machine on a set of indices for binary problems */
		virtual CBinaryLabels* apply_locked_binary(
				SGVector<index_t> indices);
		/** applies a locked machine on a set of indices for regression problems */
		virtual CRegressionLabels* apply_locked_regression(
				SGVector<index_t> indices);
		/** applies a locked machine on a set of indices for multiclass problems */
		virtual CMulticlassLabels* apply_locked_multiclass(
				SGVector<index_t> indices);
		/** applies a locked machine on a set of indices for structured problems */
		virtual CStructuredLabels* apply_locked_structured(
				SGVector<index_t> indices);
		/** applies a locked machine on a set of indices for latent problems */
		virtual CLatentLabels* apply_locked_latent(
				SGVector<index_t> indices);

		/** Locks the machine on given labels and data. After this call, only
		 * train_locked and apply_locked may be called
		 *
		 * Only possible if supports_locking() returns true
		 *
		 * @param labs labels used for locking
		 * @param features features used for locking
		 */
		virtual void data_lock(CLabels* labs, CFeatures* features);

		/** post lock */
		virtual void post_lock(CLabels* labs, CFeatures* features) { };

		/** Unlocks a locked machine and restores previous state */
		virtual void data_unlock();

		/** @return whether this machine supports locking */
		virtual bool supports_locking() const { return false; }

		/** @return whether this machine is locked */
		bool is_data_locked() const { return m_data_locked; }

		/** returns type of problem machine solves */
		virtual EProblemType get_machine_problem_type() const
		{
			SG_NOTIMPLEMENTED
			return PT_BINARY;
		}

		virtual const char* get_name() const { return "Machine"; }

	protected:
		/** train machine
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * NOT IMPLEMENTED!
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL)
		{
			SG_ERROR("train_machine is not yet implemented for %s!\n",
					get_name());
			return false;
		}

		/** Stores feature data of underlying model.
		 * After this method has been called, it is possible to change
		 * the machine's feature data and call apply(), which is then performed
		 * on the training feature data that is part of the machine's model.
		 *
		 * Base method, has to be implemented in order to allow cross-validation
		 * and model selection.
		 *
		 * NOT IMPLEMENTED! Has to be done in subclasses
		 */
		virtual void store_model_features()
		{
			SG_ERROR("Model storage and therefore unlocked Cross-Validation and"
					" Model-Selection is not supported for %s. Locked may"
					" work though.\n", get_name());
		}

		/** check whether the labels is valid.
		 *
		 * Subclasses can override this to implement their check of label types.
		 *
		 * @param lab the labels being checked, guaranteed to be non-NULL
		 */
		virtual bool is_label_valid(CLabels *lab) const
		{
			return true;
		}

		/** returns whether machine require labels for training */
		virtual bool train_require_labels() const { return true; }

	protected:
		/** maximum training time */
		float64_t m_max_train_time;

		/** labels */
		CLabels* m_labels;

		/** solver type */
		ESolverType m_solver_type;

		/** whether model features should be stored after training */
		bool m_store_model_features;

		/** whether data is locked */
		bool m_data_locked;
};
}
#endif // _MACHINE_H__