/usr/include/shogun/machine/Machine.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 1999-2009 Soeren Sonnenburg
* Written (W) 2011-2012 Heiko Strathmann
* Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _MACHINE_H__
#define _MACHINE_H__
#include <shogun/lib/common.h>
#include <shogun/base/SGObject.h>
#include <shogun/labels/Labels.h>
#include <shogun/labels/BinaryLabels.h>
#include <shogun/labels/RegressionLabels.h>
#include <shogun/labels/MulticlassLabels.h>
#include <shogun/labels/StructuredLabels.h>
#include <shogun/labels/LatentLabels.h>
#include <shogun/features/Features.h>
namespace shogun
{
class CFeatures;
class CLabels;
class CMath;
/** classifier type */
enum EMachineType
{
CT_NONE = 0,
CT_LIGHT = 10,
CT_LIGHTONECLASS = 11,
CT_LIBSVM = 20,
CT_LIBSVMONECLASS=30,
CT_LIBSVMMULTICLASS=40,
CT_MPD = 50,
CT_GPBT = 60,
CT_CPLEXSVM = 70,
CT_PERCEPTRON = 80,
CT_KERNELPERCEPTRON = 90,
CT_LDA = 100,
CT_LPM = 110,
CT_LPBOOST = 120,
CT_KNN = 130,
CT_SVMLIN=140,
CT_KERNELRIDGEREGRESSION = 150,
CT_GNPPSVM = 160,
CT_GMNPSVM = 170,
CT_SVMPERF = 200,
CT_LIBSVR = 210,
CT_SVRLIGHT = 220,
CT_LIBLINEAR = 230,
CT_KMEANS = 240,
CT_HIERARCHICAL = 250,
CT_SVMOCAS = 260,
CT_WDSVMOCAS = 270,
CT_SVMSGD = 280,
CT_MKLMULTICLASS = 290,
CT_MKLCLASSIFICATION = 300,
CT_MKLONECLASS = 310,
CT_MKLREGRESSION = 320,
CT_SCATTERSVM = 330,
CT_DASVM = 340,
CT_LARANK = 350,
CT_DASVMLINEAR = 360,
CT_GAUSSIANNAIVEBAYES = 370,
CT_AVERAGEDPERCEPTRON = 380,
CT_SGDQN = 390,
CT_CONJUGATEINDEX = 400,
CT_LINEARRIDGEREGRESSION = 410,
CT_LEASTSQUARESREGRESSION = 420,
CT_QDA = 430,
CT_NEWTONSVM = 440,
CT_GAUSSIANPROCESSREGRESSION = 450,
CT_LARS = 460,
CT_MULTICLASS = 470,
CT_DIRECTORLINEAR = 480,
CT_DIRECTORKERNEL = 490,
CT_LIBQPSOSVM = 500,
CT_PRIMALMOSEKSOSVM = 510,
CT_CCSOSVM = 520,
CT_GAUSSIANPROCESSBINARY = 530,
CT_GAUSSIANPROCESSMULTICLASS = 540,
CT_STOCHASTICSOSVM = 550,
CT_BAGGING
};
/** solver type */
enum ESolverType
{
ST_AUTO=0,
ST_CPLEX=1,
ST_GLPK=2,
ST_NEWTON=3,
ST_DIRECT=4,
ST_ELASTICNET=5,
ST_BLOCK_NORM=6
};
/** problem type */
enum EProblemType
{
PT_BINARY = 0,
PT_REGRESSION = 1,
PT_MULTICLASS = 2,
PT_STRUCTURED = 3,
PT_LATENT = 4
};
#define MACHINE_PROBLEM_TYPE(PT) \
/** returns default problem type machine solves \
* @return problem type\
*/ \
virtual EProblemType get_machine_problem_type() const { return PT; }
/** @brief A generic learning machine interface.
*
* A machine takes as input CFeatures and CLabels (by default).
* Later subclasses may specialize the machine to e.g. require labels
* and a kernel or labels and (real-valued) features.
*
* A machine needs to override the train() function for training,
* the functions apply(idx) (optionally apply() to predict on the
* whole set of examples) and the load and save routines.
*
* Machines may support locking. This means that given some data, the machine
* can be locked on this data to speed up computations. E.g. a kernel machine
* may precompute its kernel. Only train_locked and apply_locked are available
* when locked. There are methods for checking whether a machine supports
* locking.
*
*/
class CMachine : public CSGObject
{
public:
/** constructor */
CMachine();
/** destructor */
virtual ~CMachine();
/** train machine
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data).
* If flag is set, model features will be stored after training.
*
* @return whether training was successful
*/
virtual bool train(CFeatures* data=NULL);
/** apply machine to data
* if data is not specified apply to the current features
*
* @param data (test)data to be classified
* @return classified labels
*/
virtual CLabels* apply(CFeatures* data=NULL);
/** apply machine to data in means of binary classification problem */
virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);
/** apply machine to data in means of regression problem */
virtual CRegressionLabels* apply_regression(CFeatures* data=NULL);
/** apply machine to data in means of multiclass classification problem */
virtual CMulticlassLabels* apply_multiclass(CFeatures* data=NULL);
/** apply machine to data in means of SO classification problem */
virtual CStructuredLabels* apply_structured(CFeatures* data=NULL);
/** apply machine to data in means of latent problem */
virtual CLatentLabels* apply_latent(CFeatures* data=NULL);
/** set labels
*
* @param lab labels
*/
virtual void set_labels(CLabels* lab);
/** get labels
*
* @return labels
*/
virtual CLabels* get_labels();
/** set maximum training time
*
* @param t maximimum training time
*/
void set_max_train_time(float64_t t);
/** get maximum training time
*
* @return maximum training time
*/
float64_t get_max_train_time();
/** get classifier type
*
* @return classifier type NONE
*/
virtual EMachineType get_classifier_type();
/** set solver type
*
* @param st solver type
*/
void set_solver_type(ESolverType st);
/** get solver type
*
* @return solver
*/
ESolverType get_solver_type();
/** Setter for store-model-features-after-training flag
*
* @param store_model whether model should be stored after
* training
*/
virtual void set_store_model_features(bool store_model);
/** Trains a locked machine on a set of indices. Error if machine is
* not locked
*
* NOT IMPLEMENTED
*
* @param indices index vector (of locked features) that is used for training
* @return whether training was successful
*/
virtual bool train_locked(SGVector<index_t> indices)
{
SG_ERROR("train_locked(SGVector<index_t>) is not yet implemented "
"for %s\n", get_name());
return false;
}
/** applies to one vector */
virtual float64_t apply_one(int32_t i)
{
SG_NOTIMPLEMENTED
return 0.0;
}
/** Applies a locked machine on a set of indices. Error if machine is
* not locked
*
* @param indices index vector (of locked features) that is predicted
*/
virtual CLabels* apply_locked(SGVector<index_t> indices);
/** applies a locked machine on a set of indices for binary problems */
virtual CBinaryLabels* apply_locked_binary(
SGVector<index_t> indices);
/** applies a locked machine on a set of indices for regression problems */
virtual CRegressionLabels* apply_locked_regression(
SGVector<index_t> indices);
/** applies a locked machine on a set of indices for multiclass problems */
virtual CMulticlassLabels* apply_locked_multiclass(
SGVector<index_t> indices);
/** applies a locked machine on a set of indices for structured problems */
virtual CStructuredLabels* apply_locked_structured(
SGVector<index_t> indices);
/** applies a locked machine on a set of indices for latent problems */
virtual CLatentLabels* apply_locked_latent(
SGVector<index_t> indices);
/** Locks the machine on given labels and data. After this call, only
* train_locked and apply_locked may be called
*
* Only possible if supports_locking() returns true
*
* @param labs labels used for locking
* @param features features used for locking
*/
virtual void data_lock(CLabels* labs, CFeatures* features);
/** post lock */
virtual void post_lock(CLabels* labs, CFeatures* features) { };
/** Unlocks a locked machine and restores previous state */
virtual void data_unlock();
/** @return whether this machine supports locking */
virtual bool supports_locking() const { return false; }
/** @return whether this machine is locked */
bool is_data_locked() const { return m_data_locked; }
/** returns type of problem machine solves */
virtual EProblemType get_machine_problem_type() const
{
SG_NOTIMPLEMENTED
return PT_BINARY;
}
virtual const char* get_name() const { return "Machine"; }
protected:
/** train machine
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data)
*
* NOT IMPLEMENTED!
*
* @return whether training was successful
*/
virtual bool train_machine(CFeatures* data=NULL)
{
SG_ERROR("train_machine is not yet implemented for %s!\n",
get_name());
return false;
}
/** Stores feature data of underlying model.
* After this method has been called, it is possible to change
* the machine's feature data and call apply(), which is then performed
* on the training feature data that is part of the machine's model.
*
* Base method, has to be implemented in order to allow cross-validation
* and model selection.
*
* NOT IMPLEMENTED! Has to be done in subclasses
*/
virtual void store_model_features()
{
SG_ERROR("Model storage and therefore unlocked Cross-Validation and"
" Model-Selection is not supported for %s. Locked may"
" work though.\n", get_name());
}
/** check whether the labels is valid.
*
* Subclasses can override this to implement their check of label types.
*
* @param lab the labels being checked, guaranteed to be non-NULL
*/
virtual bool is_label_valid(CLabels *lab) const
{
return true;
}
/** returns whether machine require labels for training */
virtual bool train_require_labels() const { return true; }
protected:
/** maximum training time */
float64_t m_max_train_time;
/** labels */
CLabels* m_labels;
/** solver type */
ESolverType m_solver_type;
/** whether model features should be stored after training */
bool m_store_model_features;
/** whether data is locked */
bool m_data_locked;
};
}
#endif // _MACHINE_H__
|