This file is indexed.

/usr/include/shogun/machine/KernelMachine.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Written (W) 2011-2012 Heiko Strathmann
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _KERNEL_MACHINE_H__
#define _KERNEL_MACHINE_H__

#include <shogun/lib/common.h>
#include <shogun/io/SGIO.h>
#include <shogun/kernel/Kernel.h>
#include <shogun/kernel/CustomKernel.h>
#include <shogun/labels/Labels.h>
#include <shogun/machine/Machine.h>

#include <stdio.h>

namespace shogun
{
class CMachine;
class CLabels;
class CKernel;

/** @brief A generic KernelMachine interface.
 *
 * A kernel machine is defined as
 *  \f[
 *		f({\bf x})=\sum_{i=0}^{N-1} \alpha_i k({\bf x}, {\bf x_i})+b
 *	\f]
 *
 * where \f$N\f$ is the number of training examples
 * \f$\alpha_i\f$ are the weights assigned to each training example
 * \f$k(x,x')\f$ is the kernel
 * and \f$b\f$ the bias.
 *
 * Using an a-priori choosen kernel, the \f$\alpha_i\f$ and bias are determined
 * in a training procedure.
 *
 * Kernel machines support locking. This means that given some data, the machine
 * can be locked. When this is done, the kernel matrix is computed and stored in
 * a custom kernel. Speeds up cross-validation. Only train_locked and
 * apply_locked are available when locked.
 */
class CKernelMachine : public CMachine
{
	public:
		/** default constructor */
		CKernelMachine();

		/** Convenience constructor to initialize a trained kernel
		 * machine
		 *
		 * @param k kernel
		 * @param alphas vector of alpha weights
		 * @param svs indices of examples, i.e. i's for x_i
		 * @param b bias term
		 */
		CKernelMachine(CKernel* k, const SGVector<float64_t> alphas, const SGVector<int32_t> svs, float64_t b);

		/** copy constructor
		 * @param machine machine having parameters to copy
		 */
		CKernelMachine(CKernelMachine* machine);

		/** destructor */
		virtual ~CKernelMachine();

		/** Returns the name of the SGSerializable instance.  It MUST BE
		 *  the CLASS NAME without the prefixed `C'.
		 *
		 * @return name of the SGSerializable
		 */
		virtual const char* get_name() const { return "KernelMachine"; }

		/** set kernel
		 *
		 * @param k kernel
		 */
		void set_kernel(CKernel* k);

		/** get kernel
		 *
		 * @return kernel
		 */
		CKernel* get_kernel();

		/** set batch computation enabled
		 *
		 * @param enable if batch computation shall be enabled
		 */
		void set_batch_computation_enabled(bool enable);

		/** check if batch computation is enabled
		 *
		 * @return if batch computation is enabled
		 */
		bool get_batch_computation_enabled();

		/** set linadd enabled
		 *
		 * @param enable if linadd shall be enabled
		 */
		void set_linadd_enabled(bool enable);

		/** check if linadd is enabled
		 *
		 * @return if linadd is enabled
		 */
		bool get_linadd_enabled();

		/** set state of bias
		 *
		 * @param enable_bias if bias shall be enabled
		 */
		void set_bias_enabled(bool enable_bias);

		/** get state of bias
		 *
		 * @return state of bias
		 */
		bool get_bias_enabled();

		/** get bias
		 *
		 * @return bias
		 */
		float64_t get_bias();

		/** set bias to given value
		 *
		 * @param bias new bias
		 */
		void set_bias(float64_t bias);

		/** get support vector at given index
		 *
		 * @param idx index of support vector
		 * @return support vector
		 */
		int32_t get_support_vector(int32_t idx);

		/** get alpha at given index
		 *
		 * @param idx index of alpha
		 * @return alpha
		 */
		float64_t get_alpha(int32_t idx);

		/** set support vector at given index to given value
		 *
		 * @param idx index of support vector
		 * @param val new value of support vector
		 * @return if operation was successful
		 */
		bool set_support_vector(int32_t idx, int32_t val);

		/** set alpha at given index to given value
		 *
		 * @param idx index of alpha vector
		 * @param val new value of alpha vector
		 * @return if operation was successful
		 */
		bool set_alpha(int32_t idx, float64_t val);

		/** get number of support vectors
		 *
		 * @return number of support vectors
		 */
		int32_t get_num_support_vectors();

		/** set alphas to given values
		 *
		 * @param alphas float vector with all alphas to set
		 */
		void set_alphas(SGVector<float64_t> alphas);

		/** set support vectors to given values
		 *
		 * @param svs integer vector with all support vectors indexes to set
		 */
		void set_support_vectors(SGVector<int32_t> svs);

		/** @return all support vectors */
		SGVector<int32_t> get_support_vectors();

		/** @return vector of alphas */
		SGVector<float64_t> get_alphas();

		/** create new model
		 *
		 * @param num number of alphas and support vectors in new model
		 */
		bool create_new_model(int32_t num);

		/** initialise kernel optimisation
		 *
		 * @return if operation was successful
		 */
		bool init_kernel_optimization();

		/** apply kernel machine to data
		 * for regression task
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CRegressionLabels* apply_regression(CFeatures* data=NULL);

		/** apply kernel machine to data
		 * for binary classification task
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);

		/** apply kernel machine to one example
		 *
		 * @param num which example to apply to
		 * @return classified value
		 */
		virtual float64_t apply_one(int32_t num);

		/** apply example helper, used in threads
		 *
		 * @param p params of the thread
		 * @return nothing really
		 */
		static void* apply_helper(void* p);

		/** Trains a locked machine on a set of indices. Error if machine is
		 * not locked
		 *
		 * @param indices index vector (of locked features) that is used for training
		 * @return whether training was successful
		 */
		virtual bool train_locked(SGVector<index_t> indices);

		/** Applies a locked machine on a set of indices. Error if machine is
		 * not locked. Binary case
		 *
		 * @param indices index vector (of locked features) that is predicted
		 * @return resulting labels
		 */
		virtual CBinaryLabels* apply_locked_binary(SGVector<index_t> indices);

		/** Applies a locked machine on a set of indices. Error if machine is
		 * not locked. Binary case
		 *
		 * @param indices index vector (of locked features) that is predicted
		 * @return resulting labels
		 */
		virtual CRegressionLabels* apply_locked_regression(
				SGVector<index_t> indices);

		/** Applies a locked machine on a set of indices. Error if machine is
		 * not locked
		 *
		 * @param indices index vector (of locked features) that is predicted
		 * @return raw output of machine
		 */
		virtual SGVector<float64_t> apply_locked_get_output(
				SGVector<index_t> indices);

		/** Locks the machine on given labels and data. After this call, only
		 * train_locked and apply_locked may be called.
		 *
		 * Computes kernel matrix to speed up train/apply calls
		 *
		 * @param labs labels used for locking
		 * @param features features used for locking
		 */
		virtual void data_lock(CLabels* labs, CFeatures* features=NULL);

		/** Unlocks a locked machine and restores previous state */
		virtual void data_unlock();

		/** @return whether machine supports locking */
		virtual bool supports_locking() const;

	protected:

		/** apply get outputs
		 *
		 * @param data features to compute outputs
		 * @return outputs
		 */
		SGVector<float64_t> apply_get_outputs(CFeatures* data);

		/** Stores feature data of the SV indices and sets it to the lhs of the
		 * underlying kernel. Then, all SV indices are set to identity.
		 *
		 * May be overwritten by subclasses in case the model should be stored
		 * differently.
		 */
		virtual void store_model_features();

    private:
		/** register parameters and do misc init */
		void init();

	protected:
		/** kernel */
		CKernel* kernel;

		/** is filled with pre-computed custom kernel on data lock */
		CCustomKernel* m_custom_kernel;

		/** old kernel is stored here on data lock */
		CKernel* m_kernel_backup;

		/** if batch computation is enabled */
		bool use_batch_computation;

		/** if linadd is enabled */
		bool use_linadd;

		/** if bias shall be used */
		bool use_bias;

		/**  bias term b */
		float64_t m_bias;

		/** coefficients alpha */
		SGVector<float64_t> m_alpha;

		/** array of ``support vectors'' (indices of feature objects) */
		SGVector<int32_t> m_svs;
};
}
#endif /* _KERNEL_MACHINE_H__ */