This file is indexed.

/usr/include/shogun/lib/tapkee/methods.hpp is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/* This software is distributed under BSD 3-clause license (see LICENSE file).
 *
 * Copyright (c) 2012-2013 Sergey Lisitsyn, Fernando Iglesias
 */

#ifndef TAPKEE_METHODS_H_
#define TAPKEE_METHODS_H_

/* Tapkee includes */
#include <shogun/lib/tapkee/defines.hpp>
#include <shogun/lib/tapkee/utils/naming.hpp>
#include <shogun/lib/tapkee/utils/time.hpp>
#include <shogun/lib/tapkee/utils/logging.hpp>
#include <shogun/lib/tapkee/utils/conditional_select.hpp>
#include <shogun/lib/tapkee/utils/features.hpp>
#include <shogun/lib/tapkee/parameters/defaults.hpp>
#include <shogun/lib/tapkee/parameters/context.hpp>
#include <shogun/lib/tapkee/routines/locally_linear.hpp>
#include <shogun/lib/tapkee/routines/eigendecomposition.hpp>
#include <shogun/lib/tapkee/routines/generalized_eigendecomposition.hpp>
#include <shogun/lib/tapkee/routines/multidimensional_scaling.hpp>
#include <shogun/lib/tapkee/routines/diffusion_maps.hpp>
#include <shogun/lib/tapkee/routines/laplacian_eigenmaps.hpp>
#include <shogun/lib/tapkee/routines/isomap.hpp>
#include <shogun/lib/tapkee/routines/pca.hpp>
#include <shogun/lib/tapkee/routines/random_projection.hpp>
#include <shogun/lib/tapkee/routines/spe.hpp>
#include <shogun/lib/tapkee/routines/fa.hpp>
#include <shogun/lib/tapkee/routines/manifold_sculpting.hpp>
#include <shogun/lib/tapkee/neighbors/neighbors.hpp>
#include <shogun/lib/tapkee/external/barnes_hut_sne/tsne.hpp>
/* End of Tapkee includes */

namespace tapkee
{
//! Main namespace for all internal routines, should not be exposed as public API
namespace tapkee_internal
{

template <class RandomAccessIterator, class KernelCallback,
          class DistanceCallback, class FeaturesCallback>
class ImplementationBase
{
public:

	ImplementationBase(RandomAccessIterator b, RandomAccessIterator e,
	                   KernelCallback k, DistanceCallback d, FeaturesCallback f,
	                   ParametersSet& pmap, const Context& ctx) :
		parameters(pmap), context(ctx), kernel(k), distance(d), features(f),
		plain_distance(PlainDistance<RandomAccessIterator,DistanceCallback>(distance)),
		kernel_distance(KernelDistance<RandomAccessIterator,KernelCallback>(kernel)),
		begin(b), end(e),
		eigen_method(), neighbors_method(), eigenshift(), traceshift(),
		check_connectivity(), n_neighbors(), width(), timesteps(),
		ratio(), max_iteration(), tolerance(), n_updates(), perplexity(),
		theta(), squishing_rate(), global_strategy(), epsilon(), target_dimension(),
		n_vectors(0), current_dimension(0)
	{
		n_vectors = (end-begin);

		target_dimension = parameters(keywords::target_dimension);
		n_neighbors = parameters(keywords::num_neighbors).checked().positive();

		if (n_vectors > 0)
		{
			target_dimension.checked()
				.inRange(static_cast<IndexType>(1),static_cast<IndexType>(n_vectors));
			n_neighbors.checked()
				.inRange(static_cast<IndexType>(3),static_cast<IndexType>(n_vectors));
		}

		eigen_method = parameters(keywords::eigen_method);
		neighbors_method = parameters(keywords::neighbors_method);
		check_connectivity = parameters(keywords::check_connectivity);
		width = parameters(keywords::gaussian_kernel_width).checked().positive();
		timesteps = parameters(keywords::diffusion_map_timesteps).checked().positive();
		eigenshift = parameters(keywords::nullspace_shift);
		traceshift = parameters(keywords::klle_shift);
		max_iteration = parameters(keywords::max_iteration);
		tolerance = parameters(keywords::spe_tolerance).checked().positive();
		n_updates = parameters(keywords::spe_num_updates).checked().positive();
		theta = parameters(keywords::sne_theta).checked().nonNegative();
		squishing_rate = parameters(keywords::squishing_rate);
		global_strategy = parameters(keywords::spe_global_strategy);
		epsilon = parameters(keywords::fa_epsilon).checked().nonNegative();
		perplexity = parameters(keywords::sne_perplexity).checked().nonNegative();
		ratio = parameters(keywords::landmark_ratio);

		if (!is_dummy<FeaturesCallback>::value)
		{
			current_dimension = features.dimension();
		}
		else
		{
			current_dimension = 0;
		}
	}

	TapkeeOutput embedUsing(DimensionReductionMethod method)
	{
		if (context.is_cancelled())
			throw cancelled_exception();

		using std::mem_fun_ref_t;
		using std::mem_fun_ref;
		typedef std::mem_fun_ref_t<TapkeeOutput,ImplementationBase> ImplRef;

#define tapkee_method_handle(X)																	\
		case X:																					\
		{																						\
			timed_context tctx__("[+] embedding with " # X);									\
			ImplRef ref = conditional_select<													\
				((!MethodTraits<X>::needs_kernel)   || (!is_dummy<KernelCallback>::value))   &&	\
				((!MethodTraits<X>::needs_distance) || (!is_dummy<DistanceCallback>::value)) &&	\
				((!MethodTraits<X>::needs_features) || (!is_dummy<FeaturesCallback>::value)),	\
					ImplRef>()(mem_fun_ref(&ImplementationBase::embed##X),						\
					           mem_fun_ref(&ImplementationBase::embedEmpty));					\
			return ref(*this);																	\
		}																						\
		break																					\

		switch (method)
		{
			tapkee_method_handle(KernelLocallyLinearEmbedding);
			tapkee_method_handle(KernelLocalTangentSpaceAlignment);
			tapkee_method_handle(DiffusionMap);
			tapkee_method_handle(MultidimensionalScaling);
			tapkee_method_handle(LandmarkMultidimensionalScaling);
			tapkee_method_handle(Isomap);
			tapkee_method_handle(LandmarkIsomap);
			tapkee_method_handle(NeighborhoodPreservingEmbedding);
			tapkee_method_handle(LinearLocalTangentSpaceAlignment);
			tapkee_method_handle(HessianLocallyLinearEmbedding);
			tapkee_method_handle(LaplacianEigenmaps);
			tapkee_method_handle(LocalityPreservingProjections);
			tapkee_method_handle(PCA);
			tapkee_method_handle(KernelPCA);
			tapkee_method_handle(RandomProjection);
			tapkee_method_handle(StochasticProximityEmbedding);
			tapkee_method_handle(PassThru);
			tapkee_method_handle(FactorAnalysis);
			tapkee_method_handle(tDistributedStochasticNeighborEmbedding);
			tapkee_method_handle(ManifoldSculpting);
		}
#undef tapkee_method_handle
		return TapkeeOutput();
	}

private:

	static const IndexType SkipOneEigenvalue = 1;
	static const IndexType SkipNoEigenvalues = 0;

	ParametersSet parameters;
	Context context;
	KernelCallback kernel;
	DistanceCallback distance;
	FeaturesCallback features;
	PlainDistance<RandomAccessIterator,DistanceCallback> plain_distance;
	KernelDistance<RandomAccessIterator,KernelCallback> kernel_distance;

	RandomAccessIterator begin;
	RandomAccessIterator end;

	Parameter eigen_method;
	Parameter neighbors_method;
	Parameter eigenshift;
	Parameter traceshift;
	Parameter check_connectivity;
	Parameter n_neighbors;
	Parameter width;
	Parameter timesteps;
	Parameter ratio;
	Parameter max_iteration;
	Parameter tolerance;
	Parameter n_updates;
	Parameter perplexity;
	Parameter theta;
	Parameter squishing_rate;
	Parameter global_strategy;
	Parameter epsilon;
	Parameter target_dimension;

	IndexType n_vectors;
	IndexType current_dimension;

	template<class Distance>
	Neighbors findNeighborsWith(Distance d)
	{
		return find_neighbors(neighbors_method,begin,end,d,n_neighbors,check_connectivity);
	}

	static tapkee::ProjectingFunction unimplementedProjectingFunction()
	{
		return tapkee::ProjectingFunction();
	}

	TapkeeOutput embedEmpty()
	{
		throw unsupported_method_error("Some callback is missed");
		return TapkeeOutput();
	}

	TapkeeOutput embedKernelLocallyLinearEmbedding()
	{
		Neighbors neighbors = findNeighborsWith(kernel_distance);
		SparseWeightMatrix weight_matrix =
			linear_weight_matrix(begin,end,neighbors,kernel,eigenshift,traceshift);
		DenseMatrix embedding =
			eigendecomposition<SparseWeightMatrix,SparseInverseMatrixOperation>(eigen_method,
				weight_matrix,target_dimension,SkipOneEigenvalue).first;

		return TapkeeOutput(embedding, unimplementedProjectingFunction());
	}

	TapkeeOutput embedKernelLocalTangentSpaceAlignment()
	{
		Neighbors neighbors = findNeighborsWith(kernel_distance);
		SparseWeightMatrix weight_matrix =
			tangent_weight_matrix(begin,end,neighbors,kernel,target_dimension,eigenshift);
		DenseMatrix embedding =
			eigendecomposition<SparseWeightMatrix,SparseInverseMatrixOperation>(eigen_method,
				weight_matrix,target_dimension,SkipOneEigenvalue).first;

		return TapkeeOutput(embedding, unimplementedProjectingFunction());
	}

	TapkeeOutput embedDiffusionMap()
	{
		#ifdef TAPKEE_GPU
			#define DM_MATRIX_OP GPUDenseImplicitSquareMatrixOperation
		#else
			#define DM_MATRIX_OP DenseImplicitSquareSymmetricMatrixOperation
		#endif

		DenseSymmetricMatrix diffusion_matrix =
			compute_diffusion_matrix(begin,end,distance,timesteps,width);
		DenseMatrix embedding =
			eigendecomposition<DenseSymmetricMatrix,DM_MATRIX_OP>(eigen_method,diffusion_matrix,
				target_dimension,SkipNoEigenvalues).first;

		return TapkeeOutput(embedding, unimplementedProjectingFunction());

		#undef DM_MATRIX_OP
	}

	TapkeeOutput embedMultidimensionalScaling()
	{
		#ifdef TAPKEE_GPU
			#define MDS_MATRIX_OP GPUDenseImplicitSquareMatrixOperation
		#else
			#define MDS_MATRIX_OP DenseMatrixOperation
		#endif

		DenseSymmetricMatrix distance_matrix = compute_distance_matrix(begin,end,distance);
		centerMatrix(distance_matrix);
		distance_matrix.array() *= -0.5;
		EigendecompositionResult embedding =
			eigendecomposition<DenseSymmetricMatrix,MDS_MATRIX_OP>(eigen_method,
				distance_matrix,target_dimension,SkipNoEigenvalues);

		for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
			embedding.first.col(i).array() *= sqrt(embedding.second(i));
		return TapkeeOutput(embedding.first, unimplementedProjectingFunction());
		#undef MDS_MATRIX_OP
	}

	TapkeeOutput embedLandmarkMultidimensionalScaling()
	{
		ratio.checked()
			.inClosedRange(static_cast<ScalarType>(3.0/n_vectors),
			               static_cast<ScalarType>(1.0));

		Landmarks landmarks =
			select_landmarks_random(begin,end,ratio);
		DenseSymmetricMatrix distance_matrix =
			compute_distance_matrix(begin,end,landmarks,distance);
		DenseVector landmark_distances_squared = distance_matrix.colwise().mean();
		centerMatrix(distance_matrix);
		distance_matrix.array() *= -0.5;
		EigendecompositionResult landmarks_embedding =
			eigendecomposition<DenseSymmetricMatrix,DenseMatrixOperation>(eigen_method,
				distance_matrix,target_dimension,SkipNoEigenvalues);
		for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
			landmarks_embedding.first.col(i).array() *= sqrt(landmarks_embedding.second(i));
		return TapkeeOutput(triangulate(begin,end,distance,landmarks,
			landmark_distances_squared,landmarks_embedding,target_dimension), unimplementedProjectingFunction());
	}

	TapkeeOutput embedIsomap()
	{
		Neighbors neighbors = findNeighborsWith(plain_distance);
		DenseSymmetricMatrix shortest_distances_matrix =
			compute_shortest_distances_matrix(begin,end,neighbors,distance);
		shortest_distances_matrix = shortest_distances_matrix.array().square();
		centerMatrix(shortest_distances_matrix);
		shortest_distances_matrix.array() *= -0.5;

		EigendecompositionResult embedding =
			eigendecomposition<DenseSymmetricMatrix,DenseMatrixOperation>(eigen_method,
				shortest_distances_matrix,target_dimension,SkipNoEigenvalues);

		for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
			embedding.first.col(i).array() *= sqrt(embedding.second(i));

		return TapkeeOutput(embedding.first, unimplementedProjectingFunction());
	}

	TapkeeOutput embedLandmarkIsomap()
	{
		ratio.checked()
			.inClosedRange(static_cast<ScalarType>(3.0/n_vectors),
			               static_cast<ScalarType>(1.0));

		Neighbors neighbors = findNeighborsWith(plain_distance);
		Landmarks landmarks =
			select_landmarks_random(begin,end,ratio);
		DenseMatrix distance_matrix =
			compute_shortest_distances_matrix(begin,end,landmarks,neighbors,distance);
		distance_matrix = distance_matrix.array().square();

		DenseVector col_means = distance_matrix.colwise().mean();
		DenseVector row_means = distance_matrix.rowwise().mean();
		ScalarType grand_mean = distance_matrix.mean();
		distance_matrix.array() += grand_mean;
		distance_matrix.colwise() -= row_means;
		distance_matrix.rowwise() -= col_means.transpose();
		distance_matrix.array() *= -0.5;

		EigendecompositionResult landmarks_embedding;

		if (eigen_method.is(Dense))
		{
			DenseMatrix distance_matrix_sym = distance_matrix*distance_matrix.transpose();
			landmarks_embedding = eigendecomposition<DenseSymmetricMatrix,DenseImplicitSquareMatrixOperation>
				(eigen_method,distance_matrix_sym,target_dimension,SkipNoEigenvalues);
		}
		else
		{
			landmarks_embedding = eigendecomposition<DenseSymmetricMatrix,DenseImplicitSquareMatrixOperation>
				(eigen_method,distance_matrix,target_dimension,SkipNoEigenvalues);
		}

		DenseMatrix embedding = distance_matrix.transpose()*landmarks_embedding.first;

		for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
			embedding.col(i).array() /= sqrt(sqrt(landmarks_embedding.second(i)));
		return TapkeeOutput(embedding,unimplementedProjectingFunction());
	}

	TapkeeOutput embedNeighborhoodPreservingEmbedding()
	{
		Neighbors neighbors = findNeighborsWith(kernel_distance);
		SparseWeightMatrix weight_matrix =
			linear_weight_matrix(begin,end,neighbors,kernel,eigenshift,traceshift);
		DenseSymmetricMatrixPair eig_matrices =
			construct_neighborhood_preserving_eigenproblem(weight_matrix,begin,end,
				features,current_dimension);
		EigendecompositionResult projection_result =
			generalized_eigendecomposition<DenseSymmetricMatrix,DenseSymmetricMatrix,DenseInverseMatrixOperation>(
				eigen_method,eig_matrices.first,eig_matrices.second,target_dimension,SkipNoEigenvalues);
		DenseVector mean_vector =
			compute_mean(begin,end,features,current_dimension);
		tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_result.first,mean_vector));
		return TapkeeOutput(project(projection_result.first,mean_vector,begin,end,features,current_dimension),projecting_function);
	}

	TapkeeOutput embedHessianLocallyLinearEmbedding()
	{
		Neighbors neighbors = findNeighborsWith(kernel_distance);
		SparseWeightMatrix weight_matrix =
			hessian_weight_matrix(begin,end,neighbors,kernel,target_dimension);
		return TapkeeOutput(eigendecomposition<SparseWeightMatrix,SparseInverseMatrixOperation>(eigen_method,
			weight_matrix,target_dimension,SkipOneEigenvalue).first, unimplementedProjectingFunction());
	}

	TapkeeOutput embedLaplacianEigenmaps()
	{
		Neighbors neighbors = findNeighborsWith(plain_distance);
		Laplacian laplacian =
			compute_laplacian(begin,end,neighbors,distance,width);
		return TapkeeOutput(generalized_eigendecomposition<SparseWeightMatrix,DenseDiagonalMatrix,SparseInverseMatrixOperation>(
			eigen_method,laplacian.first,laplacian.second,target_dimension,SkipOneEigenvalue).first, unimplementedProjectingFunction());
	}

	TapkeeOutput embedLocalityPreservingProjections()
	{
		Neighbors neighbors = findNeighborsWith(plain_distance);
		Laplacian laplacian =
			compute_laplacian(begin,end,neighbors,distance,width);
		DenseSymmetricMatrixPair eigenproblem_matrices =
			construct_locality_preserving_eigenproblem(laplacian.first,laplacian.second,begin,end,
					features,current_dimension);
		EigendecompositionResult projection_result =
			generalized_eigendecomposition<DenseSymmetricMatrix,DenseSymmetricMatrix,DenseInverseMatrixOperation>(
				eigen_method,eigenproblem_matrices.first,eigenproblem_matrices.second,target_dimension,SkipNoEigenvalues);
		DenseVector mean_vector =
			compute_mean(begin,end,features,current_dimension);
		tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_result.first,mean_vector));
		return TapkeeOutput(project(projection_result.first,mean_vector,begin,end,features,current_dimension), projecting_function);
	}

	TapkeeOutput embedPCA()
	{
		DenseVector mean_vector =
			compute_mean(begin,end,features,current_dimension);
		DenseSymmetricMatrix centered_covariance_matrix =
			compute_covariance_matrix(begin,end,mean_vector,features,current_dimension);
		EigendecompositionResult projection_result =
			eigendecomposition<DenseSymmetricMatrix,DenseMatrixOperation>(eigen_method,centered_covariance_matrix,target_dimension,SkipNoEigenvalues);
		tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_result.first,mean_vector));
		return TapkeeOutput(project(projection_result.first,mean_vector,begin,end,features,current_dimension), projecting_function);
	}

	TapkeeOutput embedRandomProjection()
	{
		DenseMatrix projection_matrix =
			gaussian_projection_matrix(current_dimension, target_dimension);
		DenseVector mean_vector =
			compute_mean(begin,end,features,current_dimension);

		tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_matrix,mean_vector));
		return TapkeeOutput(project(projection_matrix,mean_vector,begin,end,features,current_dimension), projecting_function);
	}

	TapkeeOutput embedKernelPCA()
	{
		DenseSymmetricMatrix centered_kernel_matrix =
			compute_centered_kernel_matrix(begin,end,kernel);
		EigendecompositionResult embedding = eigendecomposition<DenseSymmetricMatrix,DenseMatrixOperation>(eigen_method,
			centered_kernel_matrix,target_dimension,SkipNoEigenvalues);
		for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
			embedding.first.col(i).array() *= sqrt(embedding.second(i));
		return TapkeeOutput(embedding.first, unimplementedProjectingFunction());
	}

	TapkeeOutput embedLinearLocalTangentSpaceAlignment()
	{
		Neighbors neighbors = findNeighborsWith(kernel_distance);
		SparseWeightMatrix weight_matrix =
			tangent_weight_matrix(begin,end,neighbors,kernel,target_dimension,eigenshift);
		DenseSymmetricMatrixPair eig_matrices =
			construct_lltsa_eigenproblem(weight_matrix,begin,end,
				features,current_dimension);
		EigendecompositionResult projection_result =
			generalized_eigendecomposition<DenseSymmetricMatrix,DenseSymmetricMatrix,DenseInverseMatrixOperation>(
				eigen_method,eig_matrices.first,eig_matrices.second,target_dimension,SkipNoEigenvalues);
		DenseVector mean_vector =
			compute_mean(begin,end,features,current_dimension);
		tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_result.first,mean_vector));
		return TapkeeOutput(project(projection_result.first,mean_vector,begin,end,features,current_dimension),
				projecting_function);
	}

	TapkeeOutput embedStochasticProximityEmbedding()
	{
		Neighbors neighbors;
		if (global_strategy.is(false))
		{
			neighbors = findNeighborsWith(plain_distance);
		}

		return TapkeeOutput(spe_embedding(begin,end,distance,neighbors,
				target_dimension,global_strategy,tolerance,n_updates,max_iteration), unimplementedProjectingFunction());
	}

	TapkeeOutput embedPassThru()
	{
		DenseMatrix feature_matrix =
			dense_matrix_from_features(features, current_dimension, begin, end);
		return TapkeeOutput(feature_matrix.transpose(),tapkee::ProjectingFunction());
	}

	TapkeeOutput embedFactorAnalysis()
	{
		DenseVector mean_vector = compute_mean(begin,end,features,current_dimension);
		return TapkeeOutput(project(begin,end,features,current_dimension,max_iteration,epsilon,
									target_dimension, mean_vector), unimplementedProjectingFunction());
	}

	TapkeeOutput embedtDistributedStochasticNeighborEmbedding()
	{
		perplexity.checked()
			.inClosedRange(static_cast<ScalarType>(0.0),
			               static_cast<ScalarType>((n_vectors-1)/3.0));

		DenseMatrix data =
			dense_matrix_from_features(features, current_dimension, begin, end);

		DenseMatrix embedding(static_cast<IndexType>(target_dimension),n_vectors);
		tsne::TSNE tsne;
		tsne.run(data.data(),n_vectors,current_dimension,embedding.data(),target_dimension,perplexity,theta);

		return TapkeeOutput(embedding.transpose(), unimplementedProjectingFunction());
	}

	TapkeeOutput embedManifoldSculpting()
	{
		squishing_rate.checked()
			.inRange(static_cast<ScalarType>(0.0),
			         static_cast<ScalarType>(1.0));

		DenseMatrix embedding =
			dense_matrix_from_features(features, current_dimension, begin, end);

		Neighbors neighbors = findNeighborsWith(plain_distance);

		manifold_sculpting_embed(begin, end, embedding, target_dimension, neighbors, distance, max_iteration, squishing_rate);

		return TapkeeOutput(embedding, tapkee::ProjectingFunction());
	}

};

template <class RandomAccessIterator, class KernelCallback,
          class DistanceCallback, class FeaturesCallback>
ImplementationBase<RandomAccessIterator,KernelCallback,DistanceCallback,FeaturesCallback>
	initialize(RandomAccessIterator begin, RandomAccessIterator end,
	           KernelCallback kernel, DistanceCallback distance, FeaturesCallback features,
	           ParametersSet& pmap, const Context& ctx)
{
	return ImplementationBase<RandomAccessIterator,KernelCallback,DistanceCallback,FeaturesCallback>(
			begin,end,kernel,distance,features,pmap,ctx);
}

} // End of namespace tapkee_internal
} // End of namespace tapkee

#endif