/usr/include/shogun/lib/tapkee/embed.hpp is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | /* This software is distributed under BSD 3-clause license (see LICENSE file).
*
* Copyright (c) 2012-2013 Sergey Lisitsyn
*/
#ifndef TAPKEE_EMBED_H_
#define TAPKEE_EMBED_H_
/* Tapkee includes */
#include <shogun/lib/tapkee/defines.hpp>
#include <shogun/lib/tapkee/methods.hpp>
/* End of Tapkee includes */
namespace tapkee
{
/** Constructs a dense embedding with specified
* dimensionality using provided data represented by random access iterators
* and provided callbacks. Returns ReturnType that is essentially a pair of
* @ref DenseMatrix (embedding of provided data) and a ProjectingFunction with
* corresponding ProjectionImplementation used to project
* data out of the sample.
*
* @tparam RandomAccessIterator random access iterator with no
* specific capabilities that points to some RandomAccessIterator::value_type
* (the simplest case is RandomAccessIterator::value_type being int).
*
* @tparam KernelCallback a callback that defines
* @code ScalarType kernel(const RandomAccessIterator::value_type&, const RandomAccessIterator::value_type&) @endcode
* function of two iterators. This method should return value of Mercer kernel function
* between vectors/objects iterators pointing to.
*
* @tparam DistanceCallback a callback that defines
* @code ScalarType distance(const RandomAccessIterator::value_type&, const RandomAccessIterator::value_type&) @endcode
* function of two iterators.
*
* @tparam FeaturesCallback a callback that defines
* @code void vector(const RandomAccessIterator::value_type&, DenseVector&) @endcode function
* used to access feature vector pointed by iterator. The callback should put the feature vector
* pointed by the iterator to the provided vector.
*
* Parameters required by the chosen algorithm are obtained from the parameter map. It gracefully
* fails during runtime and throws an exception if some of required
* parameters are not specified or have improper values.
*
* @param begin begin iterator of data
* @param end end iterator of data
* @param kernel_callback the kernel callback implementing
* @code ScalarType kernel(const RandomAccessIterator::value_type&, const RandomAccessIterator::value_type&) @endcode
* Used by the following methods:
* - @ref tapkee::KernelLocallyLinearEmbedding
* - @ref tapkee::NeighborhoodPreservingEmbedding
* - @ref tapkee::KernelLocalTangentSpaceAlignment
* - @ref tapkee::LinearLocalTangentSpaceAlignment
* - @ref tapkee::HessianLocallyLinearEmbedding
* - @ref tapkee::KernelPCA
*
* @param distance_callback the distance callback implementing
* @code ScalarType distance(const RandomAccessIterator::value_type&, const RandomAccessIterator::value_type&) @endcode
* Used by the following methods:
* - @ref tapkee::LaplacianEigenmaps
* - @ref tapkee::LocalityPreservingProjections
* - @ref tapkee::DiffusionMap
* - @ref tapkee::Isomap
* - @ref tapkee::LandmarkIsomap
* - @ref tapkee::MultidimensionalScaling
* - @ref tapkee::LandmarkMultidimensionalScaling
* - @ref tapkee::StochasticProximityEmbedding
* - @ref tapkee::tDistributedStochasticNeighborEmbedding
*
* @param feature_vector_callback the feature vector callback implementing
* @code void vector(const RandomAccessIterator::value_type&, DenseVector&) @endcode
* Used by the following methods:
* - @ref tapkee::NeighborhoodPreservingEmbedding
* - @ref tapkee::LinearLocalTangentSpaceAlignment
* - @ref tapkee::LocalityPreservingProjections
* - @ref tapkee::PCA
* - @ref tapkee::RandomProjection
* - @ref tapkee::FactorAnalysis
* - @ref tapkee::tDistributedStochasticNeighborEmbedding
* - @ref tapkee::PassThru
*
* @param parameters a set of parameters formed with
* keywords expression.
*
* @throw tapkee::wrong_parameter_error if wrong parameter value is passed
* @throw tapkee::missed_parameter_error if some required parameter is missed
* @throw tapkee::multiple_parameter_error if some parameter is provided more than once
* @throw tapkee::unsupported_method_error if some method or combination of methods is unsupported
* @throw tapkee::not_enough_memory_error if there is not enough memory to perform the computations
* @throw tapkee::cancelled_exception if computations were cancelled due to cancel_function returned true
* @throw tapkee::eigendecomposition_error if eigendecomposition has failed
*
*/
template <class RandomAccessIterator, class KernelCallback, class DistanceCallback, class FeaturesCallback>
TapkeeOutput embed(RandomAccessIterator begin, RandomAccessIterator end,
KernelCallback kernel_callback, DistanceCallback distance_callback,
FeaturesCallback features_callback, ParametersSet parameters)
{
#if EIGEN_VERSION_AT_LEAST(3,1,0)
Eigen::initParallel();
#endif
TapkeeOutput output;
parameters.merge(tapkee_internal::defaults);
DimensionReductionMethod selected_method = parameters(keywords::method);
void (*progress_function)(double) = parameters(keywords::progress_function);
bool (*cancel_function)() = parameters(keywords::cancel_function);
tapkee_internal::Context context(progress_function,cancel_function);
try
{
LoggingSingleton::instance().message_info("Using the " + get_method_name(selected_method) + " method.");
output = tapkee_internal::initialize(begin,end,kernel_callback,distance_callback,features_callback,parameters,context)
.embedUsing(selected_method);
}
catch (const std::bad_alloc&)
{
throw not_enough_memory_error("Not enough memory");
}
return output;
}
}
#endif
|