/usr/include/shogun/lib/JLCoverTree.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 | #ifndef JLCOVERTREE_H
#define JLCOVERTREE_H
#include <shogun/lib/JLCoverTreePoint.h>
#include <shogun/mathematics/Math.h>
#include<math.h>
#include<stdio.h>
#define NDEBUG
#include<assert.h>
/* First written by John Langford jl@hunch.net
Templatization by Dinoj Surendran dinojs@gmail.com
Adaptation to Shogun by Fernando José Iglesias García
*/
// the files below may not need to be included
/* Whatever structure/class/type is used for P, it must have the following functions defined:
float distance(P v1, P v2, float upper_bound);
: this returns the distance between two P objects
: the distance does not have to be calculated fully if it's more than upper_bound
v_array<P> parse_points(char *filename);
: this fills up a v_array of P objects from the input file
void print(point &P);
: this prints out the contents of a P object.
*/
using namespace std;
using namespace shogun;
/**
* Cover tree node TODO better doc
*/
template<class P>
struct node {
/** Point */
P p;
/** The maximum distance to any grandchild */
float max_dist;
/** The distance to the parent */
float parent_dist;
/** Pointer to the list of children of this node */
node<P>* children;
/** The number of children nodes of this node */
unsigned short int num_children;
/** Essentially, an upper bound on the distance to any child */
short int scale;
};
//template<class P>
//node<P> insert(P newpoint, node<P> *top_node); // not yet implemented
//
//template<class P>
//void remove(P byepoint, node<P> *top_node); // not yet implemented
//query
/**
* Cover tree node with an associated set of distances TODO better doc
*/
template<class P>
struct ds_node {
/** Vector of distances TODO better doc*/
v_array<float> dist;
/** Point TODO better doc */
P p;
};
static float base = 1.3;
static float il2 = 1. / log(base);
inline float dist_of_scale (int s)
{
return CMath::pow(base, s);
}
inline int get_scale(float d)
{
return (int) CMath::ceil(il2 * log(d));
}
template<class P>
node<P> new_node(const P &p)
{
node<P> new_node;
new_node.p = p;
return new_node;
}
template<class P>
node<P> new_leaf(const P &p)
{
node<P> new_leaf = {p,0.,0.,NULL,0,100};
return new_leaf;
}
template<class P>
float max_set(v_array<ds_node<P> > &v)
{
float max = 0.;
for (int i = 0; i < v.index; i++)
if ( max < v[i].dist.last())
max = v[i].dist.last();
return max;
}
void print_space(int s)
{
for (int i = 0; i < s; i++)
SG_SPRINT(" ")
}
template<class P>
void print(int depth, node<P> &top_node)
{
print_space(depth);
print(top_node.p);
if ( top_node.num_children > 0 )
{
print_space(depth);
SG_SPRINT("scale = %i\n",top_node.scale)
print_space(depth);
SG_SPRINT("max_dist = %f\n",top_node.max_dist)
print_space(depth);
SG_SPRINT("num children = %i\n",top_node.num_children)
for (int i = 0; i < top_node.num_children;i++)
print(depth+1, top_node.children[i]);
}
}
template<class P>
void split(v_array<ds_node<P> >& point_set, v_array<ds_node<P> >& far_set, int max_scale)
{
unsigned int new_index = 0;
float fmax = dist_of_scale(max_scale);
for (int i = 0; i < point_set.index; i++)
{
if (point_set[i].dist.last() <= fmax)
{
point_set[new_index++] = point_set[i];
}
else
push(far_set,point_set[i]);
}
point_set.index=new_index;
}
template<class P>
void dist_split(v_array<ds_node<P> >& point_set,
v_array<ds_node<P> >& new_point_set,
P new_point,
int max_scale)
{
unsigned int new_index = 0;
float fmax = dist_of_scale(max_scale);
for(int i = 0; i < point_set.index; i++)
{
float new_d;
new_d = distance(new_point, point_set[i].p, fmax);
if (new_d <= fmax )
{
push(point_set[i].dist, new_d);
push(new_point_set,point_set[i]);
}
else
point_set[new_index++] = point_set[i];
}
point_set.index = new_index;
}
/*
max_scale is the maximum scale of the node we might create here.
point_set contains points which are 2*max_scale or less away.
*/
template <class P>
node<P> batch_insert(const P& p,
int max_scale,
int top_scale,
v_array<ds_node<P> >& point_set,
v_array<ds_node<P> >& consumed_set,
v_array<v_array<ds_node<P> > >& stack)
{
if (point_set.index == 0)
return new_leaf(p);
else {
float max_dist = max_set(point_set); //O(|point_set|)
int next_scale = CMath::min(max_scale - 1, get_scale(max_dist));
if (next_scale == -2147483647-1) // We have points with distance 0.
{
v_array<node<P> > children;
push(children,new_leaf(p));
while (point_set.index > 0)
{
push(children,new_leaf(point_set.last().p));
push(consumed_set,point_set.last());
point_set.decr();
}
node<P> n = new_node(p);
n.scale = 100; // A magic number meant to be larger than all scales.
n.max_dist = 0;
alloc(children,children.index);
n.num_children = children.index;
n.children = children.elements;
return n;
}
else
{
v_array<ds_node<P> > far = pop(stack);
split(point_set,far,max_scale); //O(|point_set|)
node<P> child = batch_insert(p, next_scale, top_scale, point_set, consumed_set, stack);
if (point_set.index == 0)
{
push(stack,point_set);
point_set=far;
return child;
}
else {
node<P> n = new_node(p);
v_array<node<P> > children;
push(children, child);
v_array<ds_node<P> > new_point_set = pop(stack);
v_array<ds_node<P> > new_consumed_set = pop(stack);
while (point_set.index != 0) { //O(|point_set| * num_children)
P new_point = point_set.last().p;
float new_dist = point_set.last().dist.last();
push(consumed_set, point_set.last());
point_set.decr();
dist_split(point_set, new_point_set, new_point, max_scale); //O(|point_saet|)
dist_split(far,new_point_set,new_point,max_scale); //O(|far|)
node<P> new_child =
batch_insert(new_point, next_scale, top_scale, new_point_set, new_consumed_set, stack);
new_child.parent_dist = new_dist;
push(children, new_child);
float fmax = dist_of_scale(max_scale);
for(int i = 0; i< new_point_set.index; i++) //O(|new_point_set|)
{
new_point_set[i].dist.decr();
if (new_point_set[i].dist.last() <= fmax)
push(point_set, new_point_set[i]);
else
push(far, new_point_set[i]);
}
for(int i = 0; i< new_consumed_set.index; i++) //O(|new_point_set|)
{
new_consumed_set[i].dist.decr();
push(consumed_set, new_consumed_set[i]);
}
new_point_set.index = 0;
new_consumed_set.index = 0;
}
push(stack,new_point_set);
push(stack,new_consumed_set);
push(stack,point_set);
point_set=far;
n.scale = top_scale - max_scale;
n.max_dist = max_set(consumed_set);
alloc(children,children.index);
n.num_children = children.index;
n.children = children.elements;
return n;
}
}
}
}
template<class P>
node<P> batch_create(v_array<P> points)
{
assert(points.index > 0);
v_array<ds_node<P> > point_set;
v_array<v_array<ds_node<P> > > stack;
for (int i = 1; i < points.index; i++) {
ds_node<P> temp;
push(temp.dist, distance(points[0], points[i], FLT_MAX));
temp.p = points[i];
push(point_set,temp);
}
v_array<ds_node<P> > consumed_set;
float max_dist = max_set(point_set);
node<P> top = batch_insert (points[0],
get_scale(max_dist),
get_scale(max_dist),
point_set,
consumed_set,
stack);
for (int i = 0; i<consumed_set.index;i++)
free(consumed_set[i].dist.elements);
free(consumed_set.elements);
for (int i = 0; i<stack.index;i++)
free(stack[i].elements);
free(stack.elements);
free(point_set.elements);
return top;
}
void add_height(int d, v_array<int> &heights)
{
if (heights.index <= d)
for(;heights.index <= d;)
push(heights,0);
heights[d] = heights[d] + 1;
}
template <class P>
int height_dist(const node<P> top_node,v_array<int> &heights)
{
if (top_node.num_children == 0)
{
add_height(0,heights);
return 0;
}
else
{
int max_v=0;
for (int i = 0; i<top_node.num_children ;i++)
{
int d = height_dist(top_node.children[i], heights);
if (d > max_v)
max_v = d;
}
add_height(1 + max_v, heights);
return (1 + max_v);
}
}
template <class P>
void depth_dist(int top_scale, const node<P> top_node,v_array<int> &depths)
{
if (top_node.num_children > 0)
for (int i = 0; i<top_node.num_children ;i++)
{
add_height(top_node.scale, depths);
depth_dist(top_scale, top_node.children[i], depths);
}
}
template <class P>
void breadth_dist(const node<P> top_node,v_array<int> &breadths)
{
if (top_node.num_children == 0)
add_height(0,breadths);
else
{
for (int i = 0; i<top_node.num_children ;i++)
breadth_dist(top_node.children[i], breadths);
add_height(top_node.num_children, breadths);
}
}
/**
* List of cover tree nodes associated to a distance TODO better doc
*/
template <class P>
struct d_node {
/** Distance TODO better doc*/
float dist;
/** List of nodes TODO better doc*/
const node<P> *n;
};
template <class P>
inline float compare(const d_node<P> *p1, const d_node<P>* p2)
{
return p1 -> dist - p2 -> dist;
}
template <class P>
void halfsort (v_array<d_node<P> > cover_set)
{
if (cover_set.index <= 1)
return;
register d_node<P> *base_ptr = cover_set.elements;
d_node<P> *hi = &base_ptr[cover_set.index - 1];
d_node<P> *right_ptr = hi;
d_node<P> *left_ptr;
while (right_ptr > base_ptr)
{
d_node<P> *mid = base_ptr + ((hi - base_ptr) >> 1);
if (compare ( mid, base_ptr) < 0.)
CMath::swap(*mid, *base_ptr);
if (compare ( hi, mid) < 0.)
CMath::swap(*mid, *hi);
else
goto jump_over;
if (compare ( mid, base_ptr) < 0.)
CMath::swap(*mid, *base_ptr);
jump_over:;
left_ptr = base_ptr + 1;
right_ptr = hi - 1;
do
{
while (compare (left_ptr, mid) < 0.)
left_ptr ++;
while (compare (mid, right_ptr) < 0.)
right_ptr --;
if (left_ptr < right_ptr)
{
CMath::swap(*left_ptr, *right_ptr);
if (mid == left_ptr)
mid = right_ptr;
else if (mid == right_ptr)
mid = left_ptr;
left_ptr ++;
right_ptr --;
}
else if (left_ptr == right_ptr)
{
left_ptr ++;
right_ptr --;
break;
}
}
while (left_ptr <= right_ptr);
hi = right_ptr;
}
}
template <class P>
v_array<v_array<d_node<P> > > get_cover_sets(v_array<v_array<v_array<d_node<P> > > > &spare_cover_sets)
{
v_array<v_array<d_node<P> > > ret = pop(spare_cover_sets);
while (ret.index < 101)
{
v_array<d_node<P> > temp;
push(ret, temp);
}
return ret;
}
inline bool shell(float parent_query_dist, float child_parent_dist, float upper_bound)
{
return parent_query_dist - child_parent_dist <= upper_bound;
// && child_parent_dist - parent_query_dist <= upper_bound;
}
int internal_k =1;
void update_k(float *k_upper_bound, float upper_bound)
{
float *end = k_upper_bound + internal_k-1;
float *begin = k_upper_bound;
for (;end != begin; begin++)
{
if (upper_bound < *(begin+1))
*begin = *(begin+1);
else {
*begin = upper_bound;
break;
}
}
if (end == begin)
*begin = upper_bound;
}
float *alloc_k()
{
return (float *)malloc(sizeof(float) * internal_k);
}
void set_k(float* begin, float max)
{
for(float *end = begin+internal_k;end != begin; begin++)
*begin = max;
}
float internal_epsilon =0.;
void update_epsilon(float *upper_bound, float new_dist) {}
float *alloc_epsilon()
{
return (float *)malloc(sizeof(float));
}
void set_epsilon(float* begin, float max)
{
*begin = internal_epsilon;
}
void update_unequal(float *upper_bound, float new_dist)
{
if (new_dist != 0.)
*upper_bound = new_dist;
}
float* (*alloc_unequal)() = alloc_epsilon;
void set_unequal(float* begin, float max)
{
*begin = max;
}
void (*update)(float *foo, float bar) = update_k;
void (*setter)(float *foo, float bar) = set_k;
float* (*alloc_upper)() = alloc_k;
template <class P>
inline void copy_zero_set(node<P>* query_chi, float* new_upper_bound,
v_array<d_node<P> > &zero_set, v_array<d_node<P> > &new_zero_set)
{
new_zero_set.index = 0;
d_node<P> *end = zero_set.elements + zero_set.index;
for (d_node<P> *ele = zero_set.elements; ele != end ; ele++)
{
float upper_dist = *new_upper_bound + query_chi->max_dist;
if (shell(ele->dist, query_chi->parent_dist, upper_dist))
{
float d = distance(query_chi->p, ele->n->p, upper_dist);
if (d <= upper_dist)
{
if (d < *new_upper_bound)
update(new_upper_bound, d);
d_node<P> temp = {d, ele->n};
push(new_zero_set,temp);
}
}
}
}
template <class P>
inline void copy_cover_sets(node<P>* query_chi, float* new_upper_bound,
v_array<v_array<d_node<P> > > &cover_sets,
v_array<v_array<d_node<P> > > &new_cover_sets,
int current_scale, int max_scale)
{
for (; current_scale <= max_scale; current_scale++)
{
d_node<P>* ele = cover_sets[current_scale].elements;
d_node<P>* end = cover_sets[current_scale].elements + cover_sets[current_scale].index;
for (; ele != end; ele++)
{
float upper_dist = *new_upper_bound + query_chi->max_dist + ele->n->max_dist;
if (shell(ele->dist, query_chi->parent_dist, upper_dist))
{
float d = distance(query_chi->p, ele->n->p, upper_dist);
if (d <= upper_dist)
{
if (d < *new_upper_bound)
update(new_upper_bound,d);
d_node<P> temp = {d, ele->n};
push(new_cover_sets[current_scale],temp);
}
}
}
}
}
template <class P>
void print_query(const node<P> *top_node)
{
SG_SPRINT ("query = \n")
print(top_node->p);
if ( top_node->num_children > 0 ) {
SG_SPRINT("scale = %i\n",top_node->scale)
SG_SPRINT("max_dist = %f\n",top_node->max_dist)
SG_SPRINT("num children = %i\n",top_node->num_children)
}
}
template <class P>
void print_cover_sets(v_array<v_array<d_node<P> > > &cover_sets,
v_array<d_node<P> > &zero_set,
int current_scale, int max_scale)
{
SG_SPRINT("cover set = \n")
for (; current_scale <= max_scale; current_scale++)
{
d_node<P> *ele = cover_sets[current_scale].elements;
d_node<P> *end = cover_sets[current_scale].elements + cover_sets[current_scale].index;
SG_SPRINT ("%i\n", current_scale)
for (; ele != end; ele++)
{
node<P> *n = (node<P> *)ele->n;
print(n->p);
}
}
d_node<P> *end = zero_set.elements + zero_set.index;
SG_SPRINT ("infinity\n")
for (d_node<P> *ele = zero_set.elements; ele != end ; ele++)
{
node<P> *n = (node<P> *)ele->n;
print(n->p);
}
}
/*
An optimization to consider:
Make all distance evaluations occur in descend.
Instead of passing a cover_set, pass a stack of cover sets. The
last element holds d_nodes with your distance. The next lower
element holds a d_node with the distance to your query parent,
next = query grand parent, etc..
Compute distances in the presence of the tighter upper bound.
*/
template <class P>
inline
void descend(const node<P>* query, float* upper_bound,
int current_scale,
int &max_scale, v_array<v_array<d_node<P> > > &cover_sets,
v_array<d_node<P> > &zero_set)
{
d_node<P> *end = cover_sets[current_scale].elements + cover_sets[current_scale].index;
for (d_node<P> *parent = cover_sets[current_scale].elements; parent != end; parent++)
{
const node<P> *par = parent->n;
float upper_dist = *upper_bound + query->max_dist + query->max_dist;
if (parent->dist <= upper_dist + par->max_dist)
{
node<P> *chi = par->children;
if (parent->dist <= upper_dist + chi->max_dist)
{
if (chi->num_children > 0)
{
if (max_scale < chi->scale)
max_scale = chi->scale;
d_node<P> temp = {parent->dist, chi};
push(cover_sets[chi->scale], temp);
}
else if (parent->dist <= upper_dist)
{
d_node<P> temp = {parent->dist, chi};
push(zero_set, temp);
}
}
node<P> *child_end = par->children + par->num_children;
for (chi++; chi != child_end; chi++)
{
float upper_chi = *upper_bound + chi->max_dist + query->max_dist + query->max_dist;
if (shell(parent->dist, chi->parent_dist, upper_chi))
{
float d = distance(query->p, chi->p, upper_chi);
if (d <= upper_chi)
{
if (d < *upper_bound)
update(upper_bound, d);
if (chi->num_children > 0)
{
if (max_scale < chi->scale)
max_scale = chi->scale;
d_node<P> temp = {d, chi};
push(cover_sets[chi->scale],temp);
}
else
if (d <= upper_chi - chi->max_dist)
{
d_node<P> temp = {d, chi};
push(zero_set, temp);
}
}
}
}
}
}
}
template <class P>
void brute_nearest(const node<P>* query,v_array<d_node<P> > zero_set,
float* upper_bound,
v_array<v_array<P> > &results,
v_array<v_array<d_node<P> > > &spare_zero_sets)
{
if (query->num_children > 0)
{
v_array<d_node<P> > new_zero_set = pop(spare_zero_sets);
node<P> * query_chi = query->children;
brute_nearest(query_chi, zero_set, upper_bound, results, spare_zero_sets);
float* new_upper_bound = alloc_upper();
node<P> *child_end = query->children + query->num_children;
for (query_chi++;query_chi != child_end; query_chi++)
{
setter(new_upper_bound,*upper_bound + query_chi->parent_dist);
copy_zero_set(query_chi, new_upper_bound, zero_set, new_zero_set);
brute_nearest(query_chi, new_zero_set, new_upper_bound, results, spare_zero_sets);
}
free (new_upper_bound);
new_zero_set.index = 0;
push(spare_zero_sets, new_zero_set);
}
else
{
v_array<P> temp;
push(temp, query->p);
d_node<P> *end = zero_set.elements + zero_set.index;
for (d_node<P> *ele = zero_set.elements; ele != end ; ele++)
if (ele->dist <= *upper_bound)
push(temp, ele->n->p);
push(results,temp);
}
}
template <class P>
void internal_batch_nearest_neighbor(const node<P> *query,
v_array<v_array<d_node<P> > > &cover_sets,
v_array<d_node<P> > &zero_set,
int current_scale,
int max_scale,
float* upper_bound,
v_array<v_array<P> > &results,
v_array<v_array<v_array<d_node<P> > > > &spare_cover_sets,
v_array<v_array<d_node<P> > > &spare_zero_sets)
{
if (current_scale > max_scale) // All remaining points are in the zero set.
brute_nearest(query, zero_set, upper_bound, results, spare_zero_sets);
else
if (query->scale <= current_scale && query->scale != 100)
// Our query has too much scale. Reduce.
{
node<P> *query_chi = query->children;
v_array<d_node<P> > new_zero_set = pop(spare_zero_sets);
v_array<v_array<d_node<P> > > new_cover_sets = get_cover_sets(spare_cover_sets);
float* new_upper_bound = alloc_upper();
node<P> *child_end = query->children + query->num_children;
for (query_chi++; query_chi != child_end; query_chi++)
{
setter(new_upper_bound,*upper_bound + query_chi->parent_dist);
copy_zero_set(query_chi, new_upper_bound, zero_set, new_zero_set);
copy_cover_sets(query_chi, new_upper_bound, cover_sets, new_cover_sets,
current_scale, max_scale);
internal_batch_nearest_neighbor(query_chi, new_cover_sets, new_zero_set,
current_scale, max_scale, new_upper_bound,
results, spare_cover_sets, spare_zero_sets);
}
free (new_upper_bound);
new_zero_set.index = 0;
push(spare_zero_sets, new_zero_set);
push(spare_cover_sets, new_cover_sets);
internal_batch_nearest_neighbor(query->children, cover_sets, zero_set,
current_scale, max_scale, upper_bound, results,
spare_cover_sets, spare_zero_sets);
}
else // reduce cover set scale
{
halfsort(cover_sets[current_scale]);
descend(query, upper_bound, current_scale, max_scale,cover_sets, zero_set);
cover_sets[current_scale++].index = 0;
internal_batch_nearest_neighbor(query, cover_sets, zero_set,
current_scale, max_scale, upper_bound, results,
spare_cover_sets, spare_zero_sets);
}
}
template <class P>
void batch_nearest_neighbor(const node<P> &top_node, const node<P> &query,
v_array<v_array<P> > &results)
{
v_array<v_array<v_array<d_node<P> > > > spare_cover_sets;
v_array<v_array<d_node<P> > > spare_zero_sets;
v_array<v_array<d_node<P> > > cover_sets = get_cover_sets(spare_cover_sets);
v_array<d_node<P> > zero_set = pop(spare_zero_sets);
float* upper_bound = alloc_upper();
setter(upper_bound,FLT_MAX);
float top_dist = distance(query.p, top_node.p, FLT_MAX);
update(upper_bound, top_dist);
d_node<P> temp = {top_dist, &top_node};
push(cover_sets[0], temp);
internal_batch_nearest_neighbor(&query,cover_sets,zero_set,0,0,upper_bound,results,
spare_cover_sets,spare_zero_sets);
free(upper_bound);
push(spare_cover_sets, cover_sets);
for (int i = 0; i < spare_cover_sets.index; i++)
{
v_array<v_array<d_node<P> > > cover_sets2 = spare_cover_sets[i];
for (int j = 0; j < cover_sets2.index; j++)
free (cover_sets2[j].elements);
free(cover_sets2.elements);
}
free(spare_cover_sets.elements);
push(spare_zero_sets, zero_set);
for (int i = 0; i < spare_zero_sets.index; i++)
free(spare_zero_sets[i].elements);
free(spare_zero_sets.elements);
}
template <class P>
void k_nearest_neighbor(const node<P> &top_node, const node<P> &query,
v_array<v_array<P> > &results, int k)
{
internal_k = k;
update = update_k;
setter = set_k;
alloc_upper = alloc_k;
batch_nearest_neighbor(top_node, query,results);
}
template <class P>
void epsilon_nearest_neighbor(const node<P> &top_node, const node<P> &query,
v_array<v_array<P> > &results, float epsilon)
{
internal_epsilon = epsilon;
update = update_epsilon;
setter = set_epsilon;
alloc_upper = alloc_epsilon;
batch_nearest_neighbor(top_node, query,results);
}
template <class P>
void unequal_nearest_neighbor(const node<P> &top_node, const node<P> &query,
v_array<v_array<P> > &results)
{
update = update_unequal;
setter = set_unequal;
alloc_upper = alloc_unequal;
batch_nearest_neighbor(top_node, query, results);
}
#endif
|