/usr/include/shogun/lib/IndirectObject.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2009 Soeren Sonnenburg
* Copyright (C) 2009 Fraunhofer Institute FIRST and Max Planck Society
*/
#ifndef __INDIRECTOBJECT_H__
#define __INDIRECTOBJECT_H__
#include <shogun/lib/common.h>
namespace shogun
{
/** @brief an array class that accesses elements indirectly via an index array.
*
* It does not store the objects itself, but only indices to objects.
* This conveniently allows e.g. sorting the array without changing
* the order of objects (but only the order of their indices).
*/
template <class T, class P> class CIndirectObject
{
public:
/** default constructor
* (initializes index with -1)
*/
CIndirectObject() : index(-1)
{
}
/** constructor
* @param idx index
*/
CIndirectObject(int32_t idx)
{
index=idx;
}
/** set array
*
* @param a array
*/
static void set_array(P a)
{
array=a;
}
/** get array
*
* @return array
*/
static P get_array()
{
return array;
}
/** initialize slice
*
* @return array
*/
static void init_slice(CIndirectObject<T,P>* a, int32_t len, int32_t start=0, int32_t stop=-1)
{
if (stop==-1)
stop=len;
for (int32_t i=start; i<stop && i<len; i++)
a[i].index=i;
}
/** overload = operator
* @param x assign elements from x
*/
CIndirectObject<T,P>& operator=(const CIndirectObject<T,P>& x)
{
index=x.index;
return *this;
}
/** overload | operator and return x | y
*
* @param x x
*/
T operator|(const CIndirectObject<T,P>& x) const
{
return (*array)[index] | *(x.array)[x.index];
}
/** overload & operator and return x & y
*
* @param x x
*/
const T operator&(const CIndirectObject<T,P>& x) const
{
return (*array)[index] & *(x.array)[x.index];
}
/** overload << operator
*
* perform bit shift to the left
*
* @param shift shift by this amount
*/
T operator<<(int shift)
{
return (*array)[index] << shift;
}
/** overload >> operator
*
* perform bit shift to the right
*
* @param shift shift by this amount
*/
T operator>>(int shift)
{
return (*array)[index] >> shift;
}
/** overload ^ operator and return x ^ y
*
* @param x x
*/
T operator^(const CIndirectObject<T,P>& x) const
{
return (*array)[index] ^ *(x.array)[x.index];
}
/** overload + operator and return x + y
*
* @param x x
*/
T operator+(const CIndirectObject<T,P> &x) const
{
return (*array)[index] + *(x.array)[x.index];
}
/** overload - operator and return x - y
*
* @param x x
*/
T operator-(const CIndirectObject<T,P> &x) const
{
return (*array)[index] - *(x.array)[x.index];
}
/** overload / operator and return x / y
*
* @param x x
*/
T operator/(const CIndirectObject<T,P> &x) const
{
return (*array)[index] / *(x.array)[x.index];
}
/** overload * operator and return x * y
*
* @param x x
*/
T operator*(const CIndirectObject<T,P> &x) const
{
return (*array)[index] * *(x.array)[x.index];
}
/** overload += operator; add x to current element
*
* @param x x
*/
CIndirectObject<T,P>& operator+=(const CIndirectObject<T,P> &x)
{
(*array)[index]+=*(x.array)[x.index];
return *this;
}
/** overload -= operator; substract x from current element
*
* @param x x
*/
CIndirectObject<T,P>& operator-=(const CIndirectObject<T,P> &x)
{
(*array)[index]-=*(x.array)[x.index];
return *this;
}
/** overload *= operator; multiple x to with current element
*
* @param x x
*/
CIndirectObject<T,P>& operator*=(const CIndirectObject<T,P> &x)
{
(*array)[index]*=*(x.array)[x.index];
return *this;
}
/** overload /= operator; divide current object by x
*
* @param x x
*/
CIndirectObject<T,P>& operator/=(const CIndirectObject<T,P> &x)
{
(*array)[index]/=*(x.array)[x.index];
return *this;
}
/** overload == operator; test if current object equals x
*
* @param x x
*/
bool operator==(const CIndirectObject<T,P> &x) const
{
return (*array)[index]==*(x.array)[x.index];
}
/** overload >= operator; test if current object greater equal x
*
* @param x x
*/
bool operator>=(const CIndirectObject<T,P> &x) const
{
return (*array)[index]>=*(x.array)[x.index];
}
/** overload <= operator; test if current object lower equal x
*
* @param x x
*/
bool operator<=(const CIndirectObject<T,P> &x) const
{
return (*array)[index]<=*(x.array)[x.index];
}
/** overload > operator; test if current object is bigger than x
*
* @param x x
*/
bool operator>(const CIndirectObject<T,P> &x) const
{
return (*array)[index]>(*(x.array))[x.index];
}
/** overload < operator; test if current object is smaller than x
*
* @param x x
*/
bool operator<(const CIndirectObject<T,P> &x) const
{
return (*array)[index]<(*(x.array))[x.index];
}
/** overload ! operator; test if current object is not equal to x
*
* @param x x
*/
bool operator!=(const CIndirectObject<T,P> &x) const
{
return (*array)[index]!=(*(x.array))[x.index];
}
/** overload |= operator
*
* perform bitwise or with current element and x
*
* @param x x
*/
CIndirectObject<T,P>& operator|=(const CIndirectObject<T,P>& x)
{
(*array)[index]|=(*(x.array))[x.index];
return *this;
}
/** overload &= operator
*
* perform bitwise and with current element and x
*
* @param x x
*/
CIndirectObject<T,P>& operator&=(const CIndirectObject<T,P>& x)
{
(*array)[index]&=(*(x.array))[x.index];
return *this;
}
/** overload ^= operator
*
* perform bitwise xor with current element and x
*
* @param x x
*/
CIndirectObject<T,P>& operator^=(const CIndirectObject<T,P>& x)
{
(*array)[index]^=(*(x.array))[x.index];
return *this;
}
/** overload <<= operator
*
* perform bit shift to the left
*
* @param shift shift by this amount
*/
CIndirectObject<T,P>& operator<<=(int shift)
{
*this=*this<<shift;
return *this;
}
/** overload >>= operator
*
* perform bit shift to the right
*
* @param shift shift by this amount
*/
CIndirectObject<T,P>& operator>>=(int shift)
{
*this=*this>>shift;
return *this;
}
/** negate element */
T operator~()
{
return ~(*array)[index];
}
/** return array element */
operator T() const { return (*array)[index]; }
/** decrement element by one */
CIndirectObject<T,P>& operator--()
{
(*array)[index]--;
return *this;
}
/** increment element by one */
CIndirectObject<T,P>& operator++()
{
(*array)[index]++;
return *this;
}
protected:
/** array */
static P array;
/** index into array */
int32_t index;
};
template <class T, class P> P CIndirectObject<T,P>::array;
}
#endif //__INDIRECTOBJECT_H__
|