This file is indexed.

/usr/include/shogun/labels/BinaryLabels.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Written (W) 1999-2008 Gunnar Raetsch
 * Written (W) 2011-2012 Heiko Strathmann
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _BINARY_LABELS__H__
#define _BINARY_LABELS__H__

#include <shogun/lib/common.h>
#include <shogun/io/File.h>
#include <shogun/labels/LabelTypes.h>
#include <shogun/labels/DenseLabels.h>

namespace shogun
{
	class CFile;
	class CDenseLabels;

/** @brief Binary Labels for binary classification 
 *
 * valid values for labels are +1/-1
 *
 * Scores may be converted into calibrated probabilities using
 * scores_to_probabilities(), which implements the method described in
 * Lin, H., Lin, C., and Weng, R. (2007).
 * A note on Platt's probabilistic outputs for support vector machines.
 * Should only be used in conjunction with SVM.
 */
class CBinaryLabels : public CDenseLabels
{
	public:
		/** default constructor */
		CBinaryLabels();

		/** constructor
		 *
		 * @param num_labels number of labels
		 */
		CBinaryLabels(int32_t num_labels);

#if !defined(SWIGJAVA) && !defined(SWIGCSHARP)
		/** constructor
		 * sets labels with src elements
		 *
		 * @param src labels to set
		 */
		CBinaryLabels(SGVector<int32_t> src);
		
		/** constructor
		 * sets labels with src elements (int64 version)
		 *
		 * @param src labels to set
		 */
		CBinaryLabels(SGVector<int64_t> src);
#endif

		/** constructor
		 * sets values from src vector
		 * sets labels with sign of src elements with added threshold
		 *
		 * @param src labels to set
		 * @param threshold threshold
		 */
		CBinaryLabels(SGVector<float64_t> src, float64_t threshold=0.0);

		/** constructor
		 *
		 * @param loader File object via which to load data
		 */
		CBinaryLabels(CFile* loader);

		/** Make sure the label is valid, otherwise raise SG_ERROR.
		 *
		 * possible with subset
         *
         * @param context optional message to convey the context
		 */
		virtual void ensure_valid(const char* context=NULL);

		/** get label type
		 *
		 * @return label type binary
		 */
		virtual ELabelType get_label_type() const;

		/** Converts all scores to calibrated probabilities by fitting a
		 * sigmoid function using the method described in
		 * Lin, H., Lin, C., and Weng, R. (2007).
		 * A note on Platt's probabilistic outputs for support vector machines.
		 *
		 * A sigmoid is fitted to the scores of the labels and then is used
		 * to compute porbabilities which are stored in the values vector. This
		 * is done via computing
		 * \f$pf=x*a+b\f$ for a given score \f$x\f$ and then computing
		 * \f$\frac{\exp(-f)}{1+}exp(-f)}\f$ if \f$f\geq 0\f$ and
		 * \f$\frac{1}{(1+\exp(f)}\f$ otherwise, where \f$a, bf\f$ are shape parameters
		 * of the sigmoid. These can be specified or learned automatically
		 *
		 * Should only be used in conjunction with SVM.
		 *
		 * @param a parameter a of sigmoid, if a=b=0, both are learned
		 * @param b parameter b of sigmoid, if a=b=0, both are learned
		 */
		void scores_to_probabilities(float64_t a=0, float64_t b=0);

		/** @return object name */
		virtual const char* get_name() const { return "BinaryLabels"; }
};
}
#endif