/usr/include/shogun/features/RandomKitchenSinksDotFeatures.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Evangelos Anagnostopoulos
* Copyright (C) 2013 Evangelos Anagnostopoulos
*/
#ifndef _RANDOMKITCHENSINKS_DOT_FEATURES_H__
#define _RANDOMKITCHENSINKS_DOT_FEATURES_H__
#include <shogun/features/DotFeatures.h>
namespace shogun
{
/** @brief class that implements the Random Kitchen Sinks for the DotFeatures
* as mentioned in http://books.nips.cc/papers/files/nips21/NIPS2008_0885.pdf.
*
* The Random Kitchen Sinks algorithm expects:
* a dataset to work on
* a function phi such that |phi(x; a)| <= 1, the a's are the function parameters
* a probability distrubution p, from which to draw the a's
* the number of samples K to draw from p.
*
* Then:
* it draws K a's from p
* it computes for each vector in the dataset
* Zi = [phi(Xi;a0), ..., phi(Xi;aK)]
* and then solves the empirical risk minimization problem for all Zi, either
* through least squares or through a linear SVM.
*
* This class implements the vector transformation on-the-fly whenever it is needed.
* In order for it to work, the class expects the user to implement a subclass of
* CRKSFunctions and implement in there the functions phi and p and then pass an
* instantiated object of that class to the constructor.
*
* Further useful resources, include :
* http://www.shloosl.com/~ali/random-features/
* https://research.microsoft.com/apps/video/dl.aspx?id=103390&l=i
*/
class CRandomKitchenSinksDotFeatures : public CDotFeatures
{
public:
/** default constructor */
CRandomKitchenSinksDotFeatures();
/** constructor
* Subclasses should call generate_random_coefficients() on their
* own if they choose to use this constructor.
*
* @param dataset the dataset to work on
* @param K the number of samples to draw
*/
CRandomKitchenSinksDotFeatures(CDotFeatures* dataset, int32_t K);
/** constructor
*
* @param dataset the dataset to work on
* @param K the number of samples to draw
* @param coeff the random coefficients to use
*/
CRandomKitchenSinksDotFeatures(CDotFeatures* dataset, int32_t K,
SGMatrix<float64_t> coeff);
/** constructor loading features from file
*
* @param loader File object via which to load data
*/
CRandomKitchenSinksDotFeatures(CFile* loader);
/** copy constructor */
CRandomKitchenSinksDotFeatures(const CRandomKitchenSinksDotFeatures& orig);
/** duplicate */
virtual CFeatures* duplicate() const;
/** destructor */
virtual ~CRandomKitchenSinksDotFeatures();
/** obtain the dimensionality of the feature space
*
* (not mix this up with the dimensionality of the input space, usually
* obtained via get_num_features())
*
* @return dimensionality
*/
virtual int32_t get_dim_feature_space() const;
/** compute dot product between vector1 and vector2,
* appointed by their indices
*
* possible with subset
*
* @param vec_idx1 index of first vector
* @param df DotFeatures (of same kind) to compute dot product with
* @param vec_idx2 index of second vector
*/
virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df,
int32_t vec_idx2);
/** compute dot product between vector1 and a dense vector
*
* possible with subset
*
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
*/
virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2,
int32_t vec2_len);
/** add vector 1 multiplied with alpha to dense vector2
*
* possible with subset
*
* @param alpha scalar alpha
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
* @param abs_val if true add the absolute value
*/
virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1,
float64_t* vec2, int32_t vec2_len, bool abs_val = false);
/** get number of non-zero features in vector
*
* @param num which vector
* @return number of non-zero features in vector
*/
virtual int32_t get_nnz_features_for_vector(int32_t num);
/** iterate over the non-zero features
*
* call get_feature_iterator first, followed by get_next_feature and
* free_feature_iterator to cleanup
*
* possible with subset
*
* @param vector_index the index of the vector over whose components to
* iterate over
* @return feature iterator (to be passed to get_next_feature)
*/
virtual void* get_feature_iterator(int32_t vector_index);
/** iterate over the non-zero features
*
* call this function with the iterator returned by get_first_feature
* and call free_feature_iterator to cleanup
*
* possible with subset
*
* @param index is returned by reference (-1 when not available)
* @param value is returned by reference
* @param iterator as returned by get_first_feature
* @return true if a new non-zero feature got returned
*/
virtual bool get_next_feature(int32_t& index, float64_t& value,
void* iterator);
/** clean up iterator
* call this function with the iterator returned by get_first_feature
*
* @param iterator as returned by get_first_feature
*/
virtual void free_feature_iterator(void* iterator);
/** get feature type
*
* @return templated feature type
*/
virtual EFeatureType get_feature_type() const;
/** get feature class
*
* @return feature class DENSE
*/
virtual EFeatureClass get_feature_class() const;
/** get number of feature vectors
*
* @return number of feature vectors
*/
virtual int32_t get_num_vectors() const;
/** generate the random coefficients and return them in a
* matrix where each column is a parameter vector
*
* @return the parameter vectors in a matrix
*/
SGMatrix<float64_t> generate_random_coefficients();
/** returns the random function parameters that were generated through the function p
*
* @return the generated random coefficients
*/
SGMatrix<float64_t> get_random_coefficients();
/** @return object name */
const char* get_name() const;
protected:
/** Method used before computing the dot product between
* a feature vector and a parameter vector
*
* @param vec_idx the feature vector index
* @param par_idx the parameter vector index
*/
virtual float64_t dot(index_t vec_idx, index_t par_idx);
/** subclass must override this to perform any operations
* on the dot result between a feature vector and a parameter vector w
*
* @param dot_result the result of the dot operation
* @param par_idx the idx of the parameter vector
* @return the (optionally) modified result
*/
virtual float64_t post_dot(float64_t dot_result, index_t par_idx);
/** Generates a random parameter vector, subclasses must override this
*
* @return a random parameter vector
*/
virtual SGVector<float64_t> generate_random_parameter_vector()=0;
private:
void init(CDotFeatures* dataset, int32_t K);
protected:
/** the dataset to work on */
CDotFeatures* feats;
/** the number of samples to use */
int32_t num_samples;
/** random coefficients of the function phi, drawn from p */
SGMatrix<float64_t> random_coeff;
};
}
#endif // _RANDOMKITCHENSINKS_DOT_FEATURES_H__
|