/usr/include/shogun/features/DotFeatures.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2009-2010 Soeren Sonnenburg
* Copyright (C) 2009 Fraunhofer Institute FIRST and Max-Planck-Society
* Copyright (C) 2010 Berlin Institute of Technology
*/
#ifndef _DOTFEATURES_H___
#define _DOTFEATURES_H___
#include <shogun/lib/common.h>
#include <shogun/features/Features.h>
namespace shogun
{
/** @brief Features that support dot products among other operations.
*
* DotFeatures support the following operations:
*
* - a way to obtain the dimensionality of the feature space, i.e. \f$\mbox{dim}({\cal X})\f$
*
* - dot product between feature vectors:
*
* \f[r = {\bf x} \cdot {\bf x'}\f]
*
* - dot product between feature vector and a dense vector \f${\bf z}\f$:
*
* \f[r = {\bf x} \cdot {\bf z}\f]
*
* - multiplication with a scalar \f$\alpha\f$ and addition to a dense vector \f${\bf z}\f$:
*
* \f[ {\bf z'} = \alpha {\bf x} + {\bf z} \f]
*
* - iteration over all (potentially) non-zero features of \f${\bf x}\f$
*
*/
class CDotFeatures : public CFeatures
{
public:
/** constructor
*
* @param size cache size
*/
CDotFeatures(int32_t size=0);
/** copy constructor */
CDotFeatures(const CDotFeatures & orig);
/** constructor
*
* @param loader File object via which to load data
*/
CDotFeatures(CFile* loader);
virtual ~CDotFeatures() { }
/** obtain the dimensionality of the feature space
*
* (not mix this up with the dimensionality of the input space, usually
* obtained via get_num_features())
*
* @return dimensionality
*/
virtual int32_t get_dim_feature_space() const=0;
/** compute dot product between vector1 and vector2,
* appointed by their indices
*
* @param vec_idx1 index of first vector
* @param df DotFeatures (of same kind) to compute dot product with
* @param vec_idx2 index of second vector
*/
virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df, int32_t vec_idx2)=0;
/** compute dot product between vector1 and a dense vector
*
* @param vec_idx1 index of first vector
* @param vec2 dense vector
*/
virtual float64_t dense_dot_sgvec(int32_t vec_idx1, const SGVector<float64_t> vec2);
/** compute dot product between vector1 and a dense vector
*
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
*/
virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2, int32_t vec2_len)=0;
/** add vector 1 multiplied with alpha to dense vector2
*
* @param alpha scalar alpha
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
* @param abs_val if true add the absolute value
*/
virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1, float64_t* vec2, int32_t vec2_len, bool abs_val=false)=0;
/** Compute the dot product for a range of vectors. This function makes use of dense_dot
* alphas[i] * sparse[i]^T * w + b
*
* @param output result for the given vector range
* @param start start vector range from this idx
* @param stop stop vector range at this idx
* @param alphas scalars to multiply with, may be NULL
* @param vec dense vector to compute dot product with
* @param dim length of the dense vector
* @param b bias
*
* note that the result will be written to output[0...(stop-start-1)]
*/
virtual void dense_dot_range(float64_t* output, int32_t start, int32_t stop, float64_t* alphas, float64_t* vec, int32_t dim, float64_t b);
/** Compute the dot product for a subset of vectors. This function makes use of dense_dot
* alphas[i] * sparse[i]^T * w + b
*
* @param sub_index index for which to compute outputs
* @param num length of index
* @param output result for the given vector range
* @param alphas scalars to multiply with, may be NULL
* @param vec dense vector to compute dot product with
* @param dim length of the dense vector
* @param b bias
*/
virtual void dense_dot_range_subset(int32_t* sub_index, int32_t num,
float64_t* output, float64_t* alphas, float64_t* vec, int32_t dim, float64_t b);
/** Compute the dot product for a range of vectors. This function is
* called by the threads created in dense_dot_range */
static void* dense_dot_range_helper(void* p);
/** get number of non-zero features in vector
*
* (in case accurate estimates are too expensive overestimating is OK)
*
* @param num which vector
* @return number of sparse features in vector
*/
virtual int32_t get_nnz_features_for_vector(int32_t num)=0;
/** get combined feature weight
*
* @return combined feature weight
*/
inline float64_t get_combined_feature_weight() { return combined_weight; }
/** set combined kernel weight
*
* @param nw new combined feature weight
*/
inline void set_combined_feature_weight(float64_t nw) { combined_weight=nw; }
/** compute the feature matrix in feature space
*
* @return computed feature matrix
*/
SGMatrix<float64_t> get_computed_dot_feature_matrix();
/** compute the feature vector in feature space
*
* @return computed feature vector
*/
SGVector<float64_t> get_computed_dot_feature_vector(int32_t num);
/** run benchmark for add_to_dense_vec */
void benchmark_add_to_dense_vector(int32_t repeats=5);
/** run benchmark for dense_dot_range */
void benchmark_dense_dot_range(int32_t repeats=5);
/** iterate over the non-zero features
*
* call get_feature_iterator first, followed by get_next_feature and
* free_feature_iterator to cleanup
*
* @param vector_index the index of the vector over whose components to
* iterate over
* @return feature iterator (to be passed to get_next_feature)
*/
virtual void* get_feature_iterator(int32_t vector_index)=0;
/** iterate over the non-zero features
*
* call this function with the iterator returned by get_feature_iterator
* and call free_feature_iterator to cleanup
*
* @param index is returned by reference (-1 when not available)
* @param value is returned by reference
* @param iterator as returned by get_feature_iterator
* @return true if a new non-zero feature got returned
*/
virtual bool get_next_feature(int32_t& index, float64_t& value, void* iterator)=0;
/** clean up iterator
* call this function with the iterator returned by get_feature_iterator
*
* @param iterator as returned by get_feature_iterator
*/
virtual void free_feature_iterator(void* iterator)=0;
/** get mean
*
* @return mean returned
*/
virtual SGVector<float64_t> get_mean();
/** get mean of two CDotFeature objects
*
* @return mean returned
*/
static SGVector<float64_t> get_mean(CDotFeatures* lhs, CDotFeatures* rhs);
/** get covariance
*
* @return covariance
*/
virtual SGMatrix<float64_t> get_cov();
/** compute the covariance of two CDotFeatures together
*
* @return covariance
*/
static SGMatrix<float64_t> compute_cov(CDotFeatures* lhs, CDotFeatures* rhs);
protected:
/** display progress output
*
* @param start minimum value
* @param stop maximum value
* @param v current value
*/
void display_progress(int32_t start, int32_t stop, int32_t v);
private:
void init();
protected:
/// feature weighting in combined dot features
float64_t combined_weight;
};
}
#endif // _DOTFEATURES_H___
|