This file is indexed.

/usr/include/shogun/features/DotFeatures.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2009-2010 Soeren Sonnenburg
 * Copyright (C) 2009 Fraunhofer Institute FIRST and Max-Planck-Society
 * Copyright (C) 2010 Berlin Institute of Technology
 */

#ifndef _DOTFEATURES_H___
#define _DOTFEATURES_H___

#include <shogun/lib/common.h>
#include <shogun/features/Features.h>

namespace shogun
{
/** @brief Features that support dot products among other operations.
 *
 * DotFeatures support the following operations:
 *
 * - a way to obtain the dimensionality of the feature space, i.e. \f$\mbox{dim}({\cal X})\f$
 *
 * - dot product between feature vectors:
 *
 *   \f[r = {\bf x} \cdot {\bf x'}\f]
 *
 * - dot product between feature vector and a dense vector \f${\bf z}\f$:
 *
 *   \f[r = {\bf x} \cdot {\bf z}\f]
 *
 * - multiplication with a scalar \f$\alpha\f$ and addition to a dense vector \f${\bf z}\f$:
 *
 *   \f[ {\bf z'} = \alpha {\bf x} + {\bf z} \f]
 *
 * - iteration over all (potentially) non-zero features of \f${\bf x}\f$
 *
 */
class CDotFeatures : public CFeatures
{
	public:

		/** constructor
		 *
		 * @param size cache size
		 */
		CDotFeatures(int32_t size=0);

		/** copy constructor */
		CDotFeatures(const CDotFeatures & orig);

		/** constructor
		 *
		 * @param loader File object via which to load data
		 */
		CDotFeatures(CFile* loader);

		virtual ~CDotFeatures() { }

		/** obtain the dimensionality of the feature space
		 *
		 * (not mix this up with the dimensionality of the input space, usually
		 * obtained via get_num_features())
		 *
		 * @return dimensionality
		 */
		virtual int32_t get_dim_feature_space() const=0;

		/** compute dot product between vector1 and vector2,
		 * appointed by their indices
		 *
		 * @param vec_idx1 index of first vector
		 * @param df DotFeatures (of same kind) to compute dot product with
		 * @param vec_idx2 index of second vector
		 */
		virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df, int32_t vec_idx2)=0;

		/** compute dot product between vector1 and a dense vector
		 *
		 * @param vec_idx1 index of first vector
		 * @param vec2 dense vector
		 */
		virtual float64_t dense_dot_sgvec(int32_t vec_idx1, const SGVector<float64_t> vec2);

		/** compute dot product between vector1 and a dense vector
		 *
		 * @param vec_idx1 index of first vector
		 * @param vec2 pointer to real valued vector
		 * @param vec2_len length of real valued vector
		 */
		virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2, int32_t vec2_len)=0;

		/** add vector 1 multiplied with alpha to dense vector2
		 *
		 * @param alpha scalar alpha
		 * @param vec_idx1 index of first vector
		 * @param vec2 pointer to real valued vector
		 * @param vec2_len length of real valued vector
		 * @param abs_val if true add the absolute value
		 */
		virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1, float64_t* vec2, int32_t vec2_len, bool abs_val=false)=0;

		/** Compute the dot product for a range of vectors. This function makes use of dense_dot
		 * alphas[i] * sparse[i]^T * w + b
		 *
		 * @param output result for the given vector range
		 * @param start start vector range from this idx
		 * @param stop stop vector range at this idx
		 * @param alphas scalars to multiply with, may be NULL
		 * @param vec dense vector to compute dot product with
		 * @param dim length of the dense vector
		 * @param b bias
		 *
		 * note that the result will be written to output[0...(stop-start-1)]
		 */
		virtual void dense_dot_range(float64_t* output, int32_t start, int32_t stop, float64_t* alphas, float64_t* vec, int32_t dim, float64_t b);

		/** Compute the dot product for a subset of vectors. This function makes use of dense_dot
		 * alphas[i] * sparse[i]^T * w + b
		 *
		 * @param sub_index index for which to compute outputs
		 * @param num length of index
		 * @param output result for the given vector range
		 * @param alphas scalars to multiply with, may be NULL
		 * @param vec dense vector to compute dot product with
		 * @param dim length of the dense vector
		 * @param b bias
		 */
		virtual void dense_dot_range_subset(int32_t* sub_index, int32_t num,
				float64_t* output, float64_t* alphas, float64_t* vec, int32_t dim, float64_t b);

		/** Compute the dot product for a range of vectors. This function is
		 * called by the threads created in dense_dot_range */
		static void* dense_dot_range_helper(void* p);

		/** get number of non-zero features in vector
		 *
		 * (in case accurate estimates are too expensive overestimating is OK)
		 *
		 * @param num which vector
		 * @return number of sparse features in vector
		 */
		virtual int32_t get_nnz_features_for_vector(int32_t num)=0;

		/** get combined feature weight
		 *
		 * @return combined feature weight
		 */
		inline float64_t get_combined_feature_weight() { return combined_weight; }

		/** set combined kernel weight
		 *
		 * @param nw new combined feature weight
		 */
		inline void set_combined_feature_weight(float64_t nw) { combined_weight=nw; }

		/** compute the feature matrix in feature space
		 *
		 * @return computed feature matrix
		 */
		SGMatrix<float64_t> get_computed_dot_feature_matrix();

		/** compute the feature vector in feature space
		 *
		 * @return computed feature vector
		 */
		SGVector<float64_t> get_computed_dot_feature_vector(int32_t num);

		/** run benchmark for add_to_dense_vec */
		void benchmark_add_to_dense_vector(int32_t repeats=5);

		/** run benchmark for dense_dot_range */
		void benchmark_dense_dot_range(int32_t repeats=5);

		/** iterate over the non-zero features
		 *
		 * call get_feature_iterator first, followed by get_next_feature and
		 * free_feature_iterator to cleanup
		 *
		 * @param vector_index the index of the vector over whose components to
		 *			iterate over
		 * @return feature iterator (to be passed to get_next_feature)
		 */
		virtual void* get_feature_iterator(int32_t vector_index)=0;

		/** iterate over the non-zero features
		 *
		 * call this function with the iterator returned by get_feature_iterator
		 * and call free_feature_iterator to cleanup
		 *
		 * @param index is returned by reference (-1 when not available)
		 * @param value is returned by reference
		 * @param iterator as returned by get_feature_iterator
		 * @return true if a new non-zero feature got returned
		 */
		virtual bool get_next_feature(int32_t& index, float64_t& value, void* iterator)=0;

		/** clean up iterator
		 * call this function with the iterator returned by get_feature_iterator
		 *
		 * @param iterator as returned by get_feature_iterator
		 */
		virtual void free_feature_iterator(void* iterator)=0;

		/** get mean
		 *
		 * @return mean returned
		 */
		virtual SGVector<float64_t> get_mean();

		/** get mean of two CDotFeature objects
		 *
		 * @return mean returned
		 */
		static SGVector<float64_t> get_mean(CDotFeatures* lhs, CDotFeatures* rhs);

		/** get covariance
		 *
		 * @return covariance
		 */
		virtual SGMatrix<float64_t> get_cov();

		/** compute the covariance of two CDotFeatures together
		 *
		 * @return covariance
		 */
		static SGMatrix<float64_t> compute_cov(CDotFeatures* lhs, CDotFeatures* rhs);

	protected:
		/** display progress output
		 *
		 * @param start minimum value
		 * @param stop maximum value
		 * @param v current value
		 */
		void display_progress(int32_t start, int32_t stop, int32_t v);

	private:
		void init();

	protected:

		/// feature weighting in combined dot features
		float64_t combined_weight;
};
}
#endif // _DOTFEATURES_H___