This file is indexed.

/usr/include/shogun/features/DenseFeatures.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2010 Soeren Sonnenburg
 * Written (W) 1999-2008 Gunnar Raetsch
 * Written (W) 2011-2013 Heiko Strathmann
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 * Copyright (C) 2010 Berlin Institute of Technology
 */

#ifndef _DENSEFEATURES__H__
#define _DENSEFEATURES__H__

#include <shogun/lib/common.h>
#include <shogun/lib/Cache.h>
#include <shogun/io/File.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/features/StringFeatures.h>
#include <shogun/lib/DataType.h>

namespace shogun {
template<class ST> class CStringFeatures;
template<class ST> class CDenseFeatures;
template<class ST> class SGMatrix;
class CDotFeatures;

/** @brief The class DenseFeatures implements dense feature matrices.
 *
 * The feature matrices are stored en-block in memory in fortran order, i.e.
 * column-by-column, where a column denotes a feature vector.
 *
 * There are get_num_vectors() many feature vectors, of dimension
 * get_num_features(). To access a feature vector call
 * get_feature_vector() and when you are done treating it call
 * free_feature_vector(). While free_feature_vector() is a NOP in most cases
 * feature vectors might have been generated on the fly (due to a number
 * preprocessors being attached to them).
 *
 * From this template class a number the following dense feature matrix types
 * are used and supported:
 *
 * \li bool matrix - CDenseFeatures<bool>
 * \li 8bit char matrix - CDenseFeatures<char>
 * \li 8bit Byte matrix - CDenseFeatures<uint8_t>
 * \li 16bit Integer matrix - CDenseFeatures<int16_t>
 * \li 16bit Word matrix - CDenseFeatures<uint16_t>
 * \li 32bit Integer matrix - CDenseFeatures<int32_t>
 * \li 32bit Unsigned Integer matrix - CDenseFeatures<uint32_t>
 * \li 32bit Float matrix - CDenseFeatures<float32_t>
 * \li 64bit Float matrix - CDenseFeatures<float64_t>
 * \li 64bit Float matrix <b>in a file</b> - CRealFileFeatures
 * \li 64bit Tangent of posterior log-odds (TOP) features from HMM - CTOPFeatures
 * \li 64bit Fisher Kernel (FK) features from HMM - CTOPFeatures
 * \li 96bit Float matrix - CDenseFeatures<floatmax_t>
 *
 * Partly) subset access is supported for this feature type.
 * Dense use the (inherited) add_subset(), remove_subset() functions.
 * If done, all calls that work with features are translated to the subset.
 * See comments to find out whether it is supported for that method.
 * See also CFeatures class documentation
 */
template<class ST> class CDenseFeatures: public CDotFeatures
{
public:
	/** constructor
	 *
	 * @param size cache size
	 */
	CDenseFeatures(int32_t size = 0);

	/** copy constructor */
	CDenseFeatures(const CDenseFeatures & orig);

	/** constructor
	 *
	 * @param matrix feature matrix
	 */
	CDenseFeatures(SGMatrix<ST> matrix);

	/** constructor
	 *
	 * @param src feature matrix
	 * @param num_feat number of features in matrix
	 * @param num_vec number of vectors in matrix
	 */
	CDenseFeatures(ST* src, int32_t num_feat, int32_t num_vec);

	/** constructor loading features from file
	 *
	 * @param loader File object via which to load data
	 */
	CDenseFeatures(CFile* loader);

	/** duplicate feature object
	 *
	 * @return feature object
	 */
	virtual CFeatures* duplicate() const;

	virtual ~CDenseFeatures();

	/** free feature matrix
	 *
	 * Any subset is removed
	 */
	void free_feature_matrix();

	/** free feature matrix and cache
	 *
	 * Any subset is removed
	 */
	void free_features();

	/** get feature vector
	 * for sample num from the matrix as it is if matrix is
	 * initialized, else return preprocessed compute_feature_vector (not
	 * implemented)
	 *
	 * @param num index of feature vector
	 * @param len length is returned by reference
	 * @param dofree whether returned vector must be freed by
	 * caller via free_feature_vector
	 * @return feature vector
	 */
	ST* get_feature_vector(int32_t num, int32_t& len, bool& dofree);

	/** set feature vector num
	 *
	 * possible with subset
	 *
	 * @param vector vector
	 * @param num index if vector to set
	 */
	void set_feature_vector(SGVector<ST> vector, int32_t num);

	/** get feature vector num
	 *
	 * possible with subset
	 *
	 * @param num index of vector
	 * @return feature vector
	 */
	SGVector<ST> get_feature_vector(int32_t num);

	/** free feature vector
	 *
	 * possible with subset
	 *
	 * @param feat_vec feature vector to free
	 * @param num index in feature cache
	 * @param dofree if vector should be really deleted
	 */
	void free_feature_vector(ST* feat_vec, int32_t num, bool dofree);

	/** free feature vector
	 *
	 * possible with subset
	 *
	 * @param vec feature vector to free
	 * @param num index in feature cache
	 */
	void free_feature_vector(SGVector<ST> vec, int32_t num);

	/**
	 * Extracts the feature vectors mentioned in idx and replaces them in
	 * feature matrix in place.
	 *
	 * It does not resize the allocated memory block.
	 *
	 * not possible with subset
	 *
	 * @param idx index with examples that shall remain in the feature matrix
	 * @param idx_len length of the index
	 *
	 * Note: assumes idx is sorted
	 */
	void vector_subset(int32_t* idx, int32_t idx_len);

	/**
	 * Extracts the features mentioned in idx and replaces them in
	 * feature matrix in place.
	 *
	 * It does not resize the allocated memory block.
	 *
	 * Not possible with subset.
	 *
	 * @param idx index with features that shall remain in the feature matrix
	 * @param idx_len length of the index
	 *
	 * Note: assumes idx is sorted
	 */
	void feature_subset(int32_t* idx, int32_t idx_len);

	/** Getter the feature matrix
	 *
	 * in-place without subset
	 * a copy with subset
	 *
	 * @return matrix feature matrix
	 */
	SGMatrix<ST> get_feature_matrix();

	/** steals feature matrix, i.e. returns matrix and
	 * forget about it
	 * subset is ignored
	 *
	 * @return matrix feature matrix
	 */
	SGMatrix<ST> steal_feature_matrix();

	/** Setter for feature matrix
	 *
	 * any subset is removed
	 *
	 * num_cols is number of feature vectors
	 * num_rows is number of dims of vectors
	 * see below for definition of feature_matrix
	 *
	 * @param matrix feature matrix to set
	 *
	 */
	void set_feature_matrix(SGMatrix<ST> matrix);

	/** get the pointer to the feature matrix
	 * num_feat,num_vectors are returned by reference
	 *
	 * subset is ignored
	 *
	 * @param num_feat number of features in matrix
	 * @param num_vec number of vectors in matrix
	 * @return feature matrix
	 */
	ST* get_feature_matrix(int32_t &num_feat, int32_t &num_vec);

	/** get a transposed copy of the features
	 *
	 * possible with subset
	 *
	 * @return transposed copy
	 */
	CDenseFeatures<ST>* get_transposed();

	/** compute and return the transpose of the feature matrix
	 * which will be prepocessed.
	 * num_feat, num_vectors are returned by reference
	 * caller has to clean up
	 *
	 * possible with subset
	 *
	 * @param num_feat number of features in matrix
	 * @param num_vec number of vectors in matrix
	 * @return transposed sparse feature matrix
	 */
	ST* get_transposed(int32_t &num_feat, int32_t &num_vec);

	/** copy feature matrix
	 * store copy of feature_matrix, where num_features is the
	 * column offset, and columns are linear in memory
	 * see below for definition of feature_matrix
	 *
	 * not possible with subset
	 *
	 * @param src feature matrix to copy
	 */
	virtual void copy_feature_matrix(SGMatrix<ST> src);

	/** obtain dense features from other dotfeatures
	 *
	 * removes any subset before
	 *
	 * @param df dotfeatures to obtain features from
	 */
	void obtain_from_dot(CDotFeatures* df);

	/** apply preprocessor
	 *
	 * applies preprocessors to ALL features (subset removed before and
	 * restored afterwards)
	 *
	 * not possible with subset
	 *
	 * @param force_preprocessing if preprocssing shall be forced
	 * @return if applying was successful
	 */
	virtual bool apply_preprocessor(bool force_preprocessing = false);

	/** get number of feature vectors
	 *
	 * @return number of feature vectors
	 */
	virtual int32_t get_num_vectors() const;

	/** get number of features (of possible subset)
	 *
	 * @return number of features
	 */
	int32_t get_num_features() const;

	/** set number of features
	 *
	 * @param num number to set
	 */
	void set_num_features(int32_t num);

	/** set number of vectors
	 *
	 * not possible with subset
	 *
	 * @param num number to set
	 */
	void set_num_vectors(int32_t num);

	/** Initialize cache
	 *
	 * not possible with subset
	 */
	void initialize_cache();

	/** get feature class
	 *
	 * @return feature class DENSE
	 */
	virtual EFeatureClass get_feature_class() const;

	/** get feature type
	 *
	 * @return templated feature type
	 */
	virtual EFeatureType get_feature_type() const;

	/** reshape
	 *
	 * not possible with subset
	 *
	 * @param p_num_features new number of features
	 * @param p_num_vectors new number of vectors
	 * @return if reshaping was successful
	 */
	virtual bool reshape(int32_t p_num_features, int32_t p_num_vectors);

	/** obtain the dimensionality of the feature space
	 *
	 * (not mix this up with the dimensionality of the input space, usually
	 * obtained via get_num_features())
	 *
	 * @return dimensionality
	 */
	virtual int32_t get_dim_feature_space() const;

	/** compute dot product between vector1 and vector2,
	 * appointed by their indices
	 *
	 * possible with subset
	 *
	 * @param vec_idx1 index of first vector
	 * @param df DotFeatures (of same kind) to compute dot product with
	 * @param vec_idx2 index of second vector
	 */
	virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df,
			int32_t vec_idx2);

	/** compute dot product between vector1 and a dense vector
	 *
	 * possible with subset
	 *
	 * @param vec_idx1 index of first vector
	 * @param vec2 pointer to real valued vector
	 * @param vec2_len length of real valued vector
	 */
	virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2,
			int32_t vec2_len);

	/** add vector 1 multiplied with alpha to dense vector2
	 *
	 * possible with subset
	 *
	 * @param alpha scalar alpha
	 * @param vec_idx1 index of first vector
	 * @param vec2 pointer to real valued vector
	 * @param vec2_len length of real valued vector
	 * @param abs_val if true add the absolute value
	 */
	virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1,
			float64_t* vec2, int32_t vec2_len, bool abs_val = false);

	/** get number of non-zero features in vector
	 *
	 * @param num which vector
	 * @return number of non-zero features in vector
	 */
	virtual int32_t get_nnz_features_for_vector(int32_t num);

	/** load features from file
	 *
	 * @param loader File object via which to load data
	 */
	virtual void load(CFile* loader);

	/** save features to file
	 *
	 * @param saver File object via which to save data
	 */
	virtual void save(CFile* saver);

#ifndef DOXYGEN_SHOULD_SKIP_THIS
	/** iterator for dense features */
	struct dense_feature_iterator
	{
		/** pointer to feature vector */
		ST* vec;
		/** index of vector */
		int32_t vidx;
		/** length of vector */
		int32_t vlen;
		/** if we need to free the vector*/
		bool vfree;

		/** feature index */
		int32_t index;
	};
#endif

	/** iterate over the non-zero features
	 *
	 * call get_feature_iterator first, followed by get_next_feature and
	 * free_feature_iterator to cleanup
	 *
	 * possible with subset
	 *
	 * @param vector_index the index of the vector over whose components to
	 *			iterate over
	 * @return feature iterator (to be passed to get_next_feature)
	 */
	virtual void* get_feature_iterator(int32_t vector_index);

	/** iterate over the non-zero features
	 *
	 * call this function with the iterator returned by get_first_feature
	 * and call free_feature_iterator to cleanup
	 *
	 * possible with subset
	 *
	 * @param index is returned by reference (-1 when not available)
	 * @param value is returned by reference
	 * @param iterator as returned by get_first_feature
	 * @return true if a new non-zero feature got returned
	 */
	virtual bool get_next_feature(int32_t& index, float64_t& value,
			void* iterator);

	/** clean up iterator
	 * call this function with the iterator returned by get_first_feature
	 *
	 * @param iterator as returned by get_first_feature
	 */
	virtual void free_feature_iterator(void* iterator);

	/** Creates a new CFeatures instance containing copies of the elements
	 * which are specified by the provided indices.
	 *
	 * possible with subset
	 *
	 * @param indices indices of feature elements to copy
	 * @return new CFeatures instance with copies of feature data
	 */
	virtual CFeatures* copy_subset(SGVector<index_t> indices);

	/** checks if the contents of this CDenseFeatures object are the same to
	 * the contents of rhs
	 *
	 * @param rhs other CDenseFeatures object to compare to this one
	 * @return whether they represent the same information
	 */
	virtual bool is_equal(CDenseFeatures* rhs);

	/** Takes a list of feature instances and returns a new instance which is
	 * a concatenation of a copy if this instace's data and the given
	 * instancess data. Note that the feature types have to be equal.
	 *
	 * @param other feature object to append
	 * @return new feature object which contains copy of data of this
	 * instance and of given one
	 */
	CFeatures* create_merged_copy(CList* other);

	/** Convenience method for method with same name and list as parameter.
	 *
	 * @param other feature object to append
	 * @return new feature object which contains copy of data of this
	 * instance and of given one
	 */
	CFeatures* create_merged_copy(CFeatures* other);

	/** helper method used to specialize a base class instance
	 *
	 */
	static CDenseFeatures* obtain_from_generic(CFeatures* const base_features);

	/** @return object name */
	virtual const char* get_name() const { return "DenseFeatures"; }

protected:
	/** compute feature vector for sample num
	 * if target is set the vector is written to target
	 * len is returned by reference
	 *
	 * NOT IMPLEMENTED!
	 *
	 * @param num num
	 * @param len len
	 * @param target
	 * @return feature vector
	 */
	virtual ST* compute_feature_vector(int32_t num, int32_t& len,
			ST* target = NULL);

private:
	void init();

protected:
	/// number of vectors in cache
	int32_t num_vectors;

	/// number of features in cache
	int32_t num_features;

	/** Feature matrix and its associated number of
	 * vectors and features. Note that num_vectors / num_features
	 * above match matrix sizes if feature_matrix.matrix != NULL
	 * */
	SGMatrix<ST> feature_matrix;

	/** feature cache */
	CCache<ST>* feature_cache;
};
}
#endif // _DENSEFEATURES__H__