This file is indexed.

/usr/include/shogun/classifier/vw/VowpalWabbit.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
 * Copyright (c) 2009 Yahoo! Inc.  All rights reserved.  The copyrights
 * embodied in the content of this file are licensed under the BSD
 * (revised) open source license.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2011 Shashwat Lal Das
 * Adaptation of Vowpal Wabbit v5.1.
 * Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society.
 */

#ifndef _VOWPALWABBIT_H__
#define _VOWPALWABBIT_H__

#include <shogun/classifier/vw/vw_common.h>
#include <shogun/classifier/vw/learners/VwAdaptiveLearner.h>
#include <shogun/classifier/vw/learners/VwNonAdaptiveLearner.h>
#include <shogun/classifier/vw/VwRegressor.h>

#include <shogun/features/streaming/StreamingVwFeatures.h>
#include <shogun/machine/OnlineLinearMachine.h>

namespace shogun
{
/** @brief Class CVowpalWabbit is the implementation of the
 * online learning algorithm used in Vowpal Wabbit.
 *
 * VW is a fast online learning algorithm which operates on
 * sparse features. It uses an online gradient descent technique.
 *
 * For more details, refer to the tutorial at
 * https://github.com/JohnLangford/vowpal_wabbit/wiki/v5.1_tutorial.pdf
 */
class CVowpalWabbit: public COnlineLinearMachine
{
public:

	/** problem type */
	MACHINE_PROBLEM_TYPE(PT_BINARY);

	/**
	 * Default constructor
	 */
	CVowpalWabbit();

	/**
	 * Constructor, taking a features object
	 * as argument
	 *
	 * @param feat StreamingVwFeatures object
	 */
	CVowpalWabbit(CStreamingVwFeatures* feat);

	/** copy constructor
	 * @param vw another VowpalWabbit object
	 */
	CVowpalWabbit(CVowpalWabbit *vw);

	/**
	 * Destructor
	 */
	~CVowpalWabbit();

	/**
	 * Reinitialize the weight vectors.
	 * Call after updating env variables eg. stride.
	 */
	void reinitialize_weights();

	/**
	 * Set whether one desires to not train and only
	 * make passes over all examples instead.
	 *
	 * This is useful if one wants to create a cache file from data.
	 *
	 * @param dont_train true if one doesn't want to train
	 */
	void set_no_training(bool dont_train) { no_training = dont_train; }

	/**
	 * Set whether learning is adaptive or not
	 *
	 * @param adaptive_learning true if adaptive
	 */
	void set_adaptive(bool adaptive_learning);

	/**
	 * Set whether to use the more expensive
	 * exact norm for adaptive learning
	 *
	 * @param exact_adaptive true if exact norm is required
	 */
	void set_exact_adaptive_norm(bool exact_adaptive);

	/**
	 * Set number of passes (only works for cached input)
	 *
	 * @param passes number of passes
	 */
	void set_num_passes(int32_t passes)
	{
		env->num_passes = passes;
	}

	/**
	 * Load regressor from a dump file
	 *
	 * @param file_name name of regressor file
	 */
	void load_regressor(char* file_name);

	/**
	 * Set regressor output parameters
	 *
	 * @param file_name name of file to save regressor to
	 * @param is_text human readable or not, bool
	 */
	void set_regressor_out(char* file_name, bool is_text = true);

	/**
	 * Set file name of prediction output
	 *
	 * @param file_name name of file to save predictions to
	 */
	void set_prediction_out(char* file_name);

	/**
	 * Add a pair of namespaces whose features should
	 * be crossed for quadratic updates
	 *
	 * @param pair a string with the two namespace names concatenated
	 */
	void add_quadratic_pair(char* pair);

	/**
	 * Train on a StreamingVwFeatures object
	 *
	 * @param feat StreamingVwFeatures to train using
	 */
	virtual bool train_machine(CFeatures* feat = NULL);

	/**
	 * Predict for an example
	 *
	 * @param ex VwExample to predict for
	 *
	 * @return prediction
	 */
	virtual float32_t predict_and_finalize(VwExample* ex);

	/**
	 * Computes the exact norm during adaptive learning
	 *
	 * @param ex example
	 * @param sum_abs_x set by reference, sum of abs of features
	 *
	 * @return norm
	 */
	float32_t compute_exact_norm(VwExample* &ex, float32_t& sum_abs_x);

	/**
	 * Computes the exact norm for quadratic features during adaptive learning
	 *
	 * @param weights weights
	 * @param page_feature current feature
	 * @param offer_features paired features
	 * @param mask mask
	 * @param g square of gradient
	 * @param sum_abs_x sum of absolute value of features
	 *
	 * @return norm
	 */
	float32_t compute_exact_norm_quad(float32_t* weights, VwFeature& page_feature, v_array<VwFeature> &offer_features,
					  vw_size_t mask, float32_t g, float32_t& sum_abs_x);

	/**
	 * Get the environment
	 *
	 * @return environment as CVwEnvironment*
	 */
	virtual CVwEnvironment* get_env()
	{
		SG_REF(env);
		return env;
	}

	/**
	 * Return the name of the object
	 *
	 * @return VowpalWabbit
	 */
	virtual const char* get_name() const { return "VowpalWabbit"; }

	/**
	 * Sets the train/update methods depending on parameters
	 * set, eg. adaptive or not
	 */
	virtual void set_learner();

	/**
	 * Get learner
	 */
	CVwLearner* get_learner() { return learner; }

private:
	/**
	 * Initialize members
	 *
	 * @param feat Features object
	 */
	virtual void init(CStreamingVwFeatures* feat = NULL);

	/**
	 * Predict with l1 regularization
	 *
	 * @param ex example
	 *
	 * @return prediction
	 */
	virtual float32_t inline_l1_predict(VwExample* &ex);

	/**
	 * Predict with no regularization term
	 *
	 * @param ex example
	 *
	 * @return prediction
	 */
	virtual float32_t inline_predict(VwExample* &ex);

	/**
	 * Reduce the prediction within limits
	 *
	 * @param ret prediction
	 *
	 * @return prediction within limits
	 */
	virtual float32_t finalize_prediction(float32_t ret);

	/**
	 * Output example, i.e. write prediction, print update etc.
	 *
	 * @param ex example
	 */
	virtual void output_example(VwExample* &ex);

	/**
	 * Print statistics like VW
	 *
	 * @param ex example
	 */
	virtual void print_update(VwExample* &ex);

	/**
	 * Output the prediction to a file
	 *
	 * @param f file descriptor
	 * @param res prediction
	 * @param weight weight of example
	 * @param tag tag
	 */
	virtual void output_prediction(int32_t f, float32_t res, float32_t weight, v_array<char> tag);

	/**
	 * Set whether to display statistics or not
	 *
	 * @param verbose true or false
	 */
	void set_verbose(bool verbose);

protected:
	/// Features
	CStreamingVwFeatures* features;

	/// Environment for VW, i.e., globals
	CVwEnvironment* env;

	/// Learner to use
	CVwLearner* learner;

	/// Regressor
	CVwRegressor* reg;

private:
	/// Whether to display statistics or not
	bool quiet;

	/// Whether we should just run over examples without training
	bool no_training;

	/// Multiplication factor for number of examples to dump after
	float32_t dump_interval;
	/// Sum of loss since last printed update
	float32_t sum_loss_since_last_dump;
	/// Number of weighted examples in previous dump
	float64_t old_weighted_examples;

	/// Name of file to save regressor to
	char* reg_name;
	/// Whether to save regressor as readable text or not
	bool reg_dump_text;

	/// Whether to save predictions or not
	bool save_predictions;
	/// Descriptor of prediction file
	int32_t prediction_fd;
};

}
#endif // _VOWPALWABBIT_H__