This file is indexed.

/usr/include/shogun/classifier/svm/WDSVMOcas.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2007-2008 Vojtech Franc
 * Written (W) 2007-2009 Soeren Sonnenburg
 * Copyright (C) 2007-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _WDSVMOCAS_H___
#define _WDSVMOCAS_H___

#include <shogun/lib/common.h>
#include <shogun/machine/Machine.h>
#include <shogun/classifier/svm/SVMOcas.h>
#include <shogun/features/StringFeatures.h>
#include <shogun/labels/Labels.h>

namespace shogun
{
template <class ST> class CStringFeatures;

/** @brief class WDSVMOcas */
class CWDSVMOcas : public CMachine
{
	public:
		/** problem type */
		MACHINE_PROBLEM_TYPE(PT_BINARY);

		/** default constructor  */
		CWDSVMOcas();

		/** constructor
		 *
		 * @param type type of SVM
		 */
		CWDSVMOcas(E_SVM_TYPE type);

		/** constructor
		 *
		 * @param C constant C
		 * @param d degree
		 * @param from_d from degree
		 * @param traindat training features
		 * @param trainlab labels for training features
		 */
		CWDSVMOcas(
			float64_t C, int32_t d, int32_t from_d,
			CStringFeatures<uint8_t>* traindat, CLabels* trainlab);
		virtual ~CWDSVMOcas();

		/** get classifier type
		 *
		 * @return classifier type WDSVMOCAS
		 */
		virtual EMachineType get_classifier_type() { return CT_WDSVMOCAS; }

		/** set C
		 *
		 * @param c_neg new C constant for negatively labeled examples
		 * @param c_pos new C constant for positively labeled examples
		 *
		 */
		inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }

		/** get C1
		 *
		 * @return C1
		 */
		inline float64_t get_C1() { return C1; }

		/** get C2
		 *
		 * @return C2
		 */
		inline float64_t get_C2() { return C2; }

		/** set epsilon
		 *
		 * @param eps new epsilon
		 */
		inline void set_epsilon(float64_t eps) { epsilon=eps; }

		/** get epsilon
		 *
		 * @return epsilon
		 */
		inline float64_t get_epsilon() { return epsilon; }

		/** set features
		 *
		 * @param feat features to set
		 */
		inline void set_features(CStringFeatures<uint8_t>* feat)
		{
			SG_REF(feat);
			SG_UNREF(features);
			features=feat;
		}

		/** get features
		 *
		 * @return features
		 */
		inline CStringFeatures<uint8_t>* get_features()
		{
			SG_REF(features);
			return features;
		}

		/** set if bias shall be enabled
		 *
		 * @param enable_bias if bias shall be enabled
		 */
		inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }

		/** check if bias is enabled
		 *
		 * @return if bias is enabled
		 */
		inline bool get_bias_enabled() { return use_bias; }

		/** set buffer size
		 *
		 * @param sz buffer size
		 */
		inline void set_bufsize(int32_t sz) { bufsize=sz; }

		/** get buffer size
		 *
		 * @return buffer size
		 */
		inline int32_t get_bufsize() { return bufsize; }

		/** set degree
		 *
		 * @param d degree
		 * @param from_d from degree
		 */
		inline void set_degree(int32_t d, int32_t from_d)
		{
			degree=d;
			from_degree=from_d;
		}

		/** get degree
		 *
		 * @return degree
		 */
		inline int32_t get_degree() { return degree; }

		/** classify objects
		 * for binary classification problems
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);

		/** classify objects
		 * for regression problems
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CRegressionLabels* apply_regression(CFeatures* data=NULL);

		/** classify one example
		 *
		 * @param num number of example to classify
		 * @return classified result
		 */
		virtual float64_t apply_one(int32_t num)
		{
			ASSERT(features)
			if (!wd_weights)
				set_wd_weights();

			int32_t len=0;
			float64_t sum=0;
			bool free_vec;
			uint8_t* vec=features->get_feature_vector(num, len, free_vec);
			//SG_INFO("len %d, string_length %d\n", len, string_length)
			ASSERT(len==string_length)

			for (int32_t j=0; j<string_length; j++)
			{
				int32_t offs=w_dim_single_char*j;
				int32_t val=0;
				for (int32_t k=0; (j+k<string_length) && (k<degree); k++)
				{
					val=val*alphabet_size + vec[j+k];
					sum+=wd_weights[k] * w[offs+val];
					offs+=w_offsets[k];
				}
			}
			features->free_feature_vector(vec, num, free_vec);
			return sum/normalization_const;
		}

		/** set normalization const */
		inline void set_normalization_const()
		{
			ASSERT(features)
			normalization_const=0;
			for (int32_t i=0; i<degree; i++)
				normalization_const+=(string_length-i)*wd_weights[i]*wd_weights[i];

			normalization_const=CMath::sqrt(normalization_const);
			SG_DEBUG("normalization_const:%f\n", normalization_const)
		}

		/** get normalization const
		 *
		 * @return normalization const
		 */
		inline float64_t get_normalization_const() { return normalization_const; }


	protected:

		/** get real outputs
		 *
		 * @param data features to apply for
		 */
		SGVector<float64_t> apply_get_outputs(CFeatures* data);

		/** set wd weights
		 *
		 * @return w_dim_single_c
		 */
		int32_t set_wd_weights();

		/** compute W
		 *
		 * @param sq_norm_W square normed W
		 * @param dp_WoldW dp W old W
		 * @param alpha alpha
		 * @param nSel nSel
		 * @param ptr ptr
		 */
		static void compute_W(
			float64_t *sq_norm_W, float64_t *dp_WoldW, float64_t *alpha,
			uint32_t nSel, void* ptr );

		/** update W
		 *
		 * @param t t
		 * @param ptr ptr
		 * @return something floaty
		 */
		static float64_t update_W(float64_t t, void* ptr );

		/** helper function for adding a new cut
		 *
		 * @param ptr
		 * @return ptr
		 */
		static void* add_new_cut_helper(void* ptr);

		/** add new cut
		 *
		 * @param new_col_H new col H
		 * @param new_cut new cut
		 * @param cut_length length of cut
		 * @param nSel nSel
		 * @param ptr ptr
		 */
		static int add_new_cut(
			float64_t *new_col_H, uint32_t *new_cut, uint32_t cut_length,
			uint32_t nSel, void* ptr );

		/** helper function for computing the output
		 *
		 * @param ptr
		 * @return ptr
		 */
		static void* compute_output_helper(void* ptr);

		/** compute output
		 *
		 * @param output output
		 * @param ptr ptr
		 */
		static int compute_output( float64_t *output, void* ptr );

		/** sort
		 *
		 * @param vals vals
		 * @param data data
		 * @param size size
		 */
		static int sort( float64_t* vals, float64_t* data, uint32_t size);

		/** print nothing */
		static inline void print(ocas_return_value_T value)
		{
			  return;
		}


		/** @return object name */
		virtual const char* get_name() const { return "WDSVMOcas"; }

	protected:
		/** train classifier
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL);

	protected:
		/** features */
		CStringFeatures<uint8_t>* features;
		/** if bias shall be used */
		bool use_bias;
		/** buffer size */
		int32_t bufsize;
		/** C1 */
		float64_t C1;
		/** C2 */
		float64_t C2;
		/** epsilon */
		float64_t epsilon;
		/** method */
		E_SVM_TYPE method;

		/** degree */
		int32_t degree;
		/** from degree */
		int32_t from_degree;
		/** wd weights */
		float32_t* wd_weights;
		/** num vectors */
		int32_t num_vec;
		/** length of string in vector */
		int32_t string_length;
		/** size of alphabet */
		int32_t alphabet_size;

		/** normalization const */
		float64_t normalization_const;

		/** bias */
		float64_t bias;
		/** old_bias */
		float64_t old_bias;
		/** w offsets */
		int32_t* w_offsets;
		/** w dim */
		int32_t w_dim;
		/** w dim of a single char */
		int32_t w_dim_single_char;
		/** w */
		float32_t* w;
		/** old w*/
		float32_t* old_w;
		/** labels */
		float64_t* lab;

		/** cuts */
		float32_t** cuts;
		/** bias dimensions */
		float64_t* cp_bias;
};
}
#endif