This file is indexed.

/usr/include/shogun/classifier/Perceptron.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _PERCEPTRON_H___
#define _PERCEPTRON_H___

#include <stdio.h>
#include <shogun/lib/common.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/machine/LinearMachine.h>

namespace shogun
{
/** @brief Class Perceptron implements the standard linear (online) perceptron.
 *
 * Given a maximum number of iterations (the standard perceptron algorithm is
 * not guaranteed to converge) and a fixed lerning rate, the result is a linear
 * classifier.
 *
 * \sa CLinearMachine
 * \sa http://en.wikipedia.org/wiki/Perceptron
 */
class CPerceptron : public CLinearMachine
{
	public:

		/** problem type */
		MACHINE_PROBLEM_TYPE(PT_BINARY);

		/** default constructor */
		CPerceptron();

		/** constructor
		 *
		 * @param traindat training features
		 * @param trainlab labels for training features
		 */
		CPerceptron(CDotFeatures* traindat, CLabels* trainlab);
		virtual ~CPerceptron();

		/** get classifier type
		 *
		 * @return classifier type PERCEPTRON
		 */
		virtual EMachineType get_classifier_type() { return CT_PERCEPTRON; }

		/// set learn rate of gradient descent training algorithm
		inline void set_learn_rate(float64_t r)
		{
			learn_rate=r;
		}

		/// set maximum number of iterations
		inline void set_max_iter(int32_t i)
		{
			max_iter=i;
		}

		/// set if the hyperplane should be initialized
		void set_initialize_hyperplane(bool initialize_hyperplane);

		/// get if the hyperplane should be initialized
		bool get_initialize_hyperplane();

		/** @return object name */
		virtual const char* get_name() const { return "Perceptron"; }

	protected:
		/** train classifier
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL);

	protected:
		/** learning rate */
		float64_t learn_rate;
		/** maximum number of iterations */
		int32_t max_iter;

	private:
		/** whether the hyperplane should be initialized in train_machine
		 *
		 * this allows to initialize the hyperplane externally using set_w and set_b
		 */
		bool m_initialize_hyperplane;
};
}
#endif