/usr/include/shogun/classifier/LDA.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 1999-2009 Soeren Sonnenburg
* Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _LDA_H___
#define _LDA_H___
#include <shogun/lib/config.h>
#ifdef HAVE_LAPACK
#include <shogun/lib/common.h>
#include <shogun/features/Features.h>
#include <shogun/features/DenseFeatures.h>
#include <shogun/machine/LinearMachine.h>
namespace shogun
{
template <class ST> class CDenseFeatures;
/** @brief Class LDA implements regularized Linear Discriminant Analysis.
*
* LDA learns a linear classifier and requires examples to be CDenseFeatures.
* The learned linear classification rule is optimal under the assumption that
* both classes a gaussian distributed with equal co-variance. To find a linear
* separation \f${\bf w}\f$ in training, the in-between class variance is
* maximized and the within class variance is minimized, i.e.
*
* \f[
* J({\bf w})=\frac{{\bf w^T} S_B {\bf w}}{{\bf w^T} S_W {\bf w}}
* \f]
*
* is maximized, where
* \f[S_b := ({\bf m_{+1}} - {\bf m_{-1}})({\bf m_{+1}} - {\bf m_{-1}})^T \f]
* is the between class scatter matrix and
* \f[S_w := \sum_{c\in\{-1,+1\}}\sum_{{\bf x}\in X_{c}}({\bf x} - {\bf m_c})({\bf x} - {\bf m_c})^T \f]
* is the within class scatter matrix with mean \f${\bf m_c} :=
* \frac{1}{N}\sum_{j=1}^N {\bf x_j^c}\f$ and \f$X_c:=\{x_1^c, \dots, x_N^c\}\f$
* the set of examples of class c.
*
* LDA is very fast for low-dimensional samples. The regularization parameter
* \f$\gamma\f$ (especially useful in the low sample case) should be tuned in
* cross-validation.
*
* \sa CLinearMachine
* \sa http://en.wikipedia.org/wiki/Linear_discriminant_analysis
*/
class CLDA : public CLinearMachine
{
public:
MACHINE_PROBLEM_TYPE(PT_BINARY);
/** constructor
*
* @param gamma gamma
*/
CLDA(float64_t gamma=0);
/** constructor
*
* @param gamma gamma
* @param traindat training features
* @param trainlab labels for training features
*/
CLDA(float64_t gamma, CDenseFeatures<float64_t>* traindat, CLabels* trainlab);
virtual ~CLDA();
/** set gamma
*
* @param gamma the new gamma
*/
inline void set_gamma(float64_t gamma)
{
m_gamma=gamma;
}
/** get gamma
*
* @return gamma
*/
inline float64_t get_gamma()
{
return m_gamma;
}
/** get classifier type
*
* @return classifier type LDA
*/
virtual EMachineType get_classifier_type()
{
return CT_LDA;
}
/** set features
*
* @param feat features to set
*/
virtual void set_features(CDotFeatures* feat)
{
if (feat->get_feature_class() != C_DENSE ||
feat->get_feature_type() != F_DREAL)
SG_ERROR("LDA requires SIMPLE REAL valued features\n")
CLinearMachine::set_features(feat);
}
/** @return object name */
virtual const char* get_name() const { return "LDA"; }
protected:
/** train LDA classifier
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data)
*
* @return whether training was successful
*/
virtual bool train_machine(CFeatures* data=NULL);
protected:
/** gamma */
float64_t m_gamma;
};
}
#endif
#endif
|