/usr/lib/ocaml/sexplib/conv.mli is in libsexplib-camlp4-dev 109.20.00-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | (** Utility Module for S-expression Conversions *)
open Bigarray
(** Dummy definitions for "optional" options, lists, and for opaque types *)
type sexp_bool = bool
type 'a sexp_option = 'a option
type 'a sexp_list = 'a list
type 'a sexp_array = 'a array
type 'a sexp_opaque = 'a
(** {6 Type aliases} *)
type bigstring = Sexp.bigstring
type float32_vec = (float, float32_elt, fortran_layout) Array1.t
type float64_vec = (float, float64_elt, fortran_layout) Array1.t
type vec = float64_vec
type float32_mat = (float, float32_elt, fortran_layout) Array2.t
type float64_mat = (float, float64_elt, fortran_layout) Array2.t
type mat = float64_mat
(** {6 Conversion of OCaml-values to S-expressions} *)
val default_string_of_float : (float -> string) ref
(** [default_string_of_float] reference to the default function used
to convert floats to strings.
Initially set to [fun n -> sprintf "%.20G" n].
*)
val write_old_option_format : bool ref
(** [write_old_option_format] reference for the default option format
used to write option values. If set to [true], the old-style option
format will be used, the new-style one otherwise.
Initially set to [true].
*)
val read_old_option_format : bool ref
(** [read_old_option_format] reference for the default option format
used to read option values. [Of_sexp_error] will be raised
with old-style option values if this reference is set to [false].
Reading new-style option values is always supported. Using a global
reference instead of changing the converter calling conventions is
the only way to avoid breaking old code with the standard macros.
Initially set to [true].
*)
(** We re-export a tail recursive map function, because some modules
override the standard library functions (e.g. [StdLabels]) which
wrecks havoc with the camlp4 extension. *)
val list_map : ('a -> 'b) -> 'a list -> 'b list
val sexp_of_unit : unit -> Sexp.t
(** [sexp_of_unit ()] converts a value of type [unit] to an S-expression. *)
val sexp_of_bool : bool -> Sexp.t
(** [sexp_of_bool b] converts the value [x] of type [bool] to an
S-expression. *)
val sexp_of_string : string -> Sexp.t
(** [sexp_of_bool str] converts the value [str] of type [string] to an
S-expression. *)
val sexp_of_char : char -> Sexp.t
(** [sexp_of_char c] converts the value [c] of type [char] to an
S-expression. *)
val sexp_of_int : int -> Sexp.t
(** [sexp_of_int n] converts the value [n] of type [int] to an
S-expression. *)
val sexp_of_float : float -> Sexp.t
(** [sexp_of_float n] converts the value [n] of type [float] to an
S-expression. *)
val sexp_of_int32 : int32 -> Sexp.t
(** [sexp_of_int32 n] converts the value [n] of type [int32] to an
S-expression. *)
val sexp_of_int64 : int64 -> Sexp.t
(** [sexp_of_int64 n] converts the value [n] of type [int64] to an
S-expression. *)
val sexp_of_nativeint : nativeint -> Sexp.t
(** [sexp_of_nativeint n] converts the value [n] of type [nativeint] to an
S-expression. *)
val sexp_of_big_int : Big_int.big_int -> Sexp.t
(** [sexp_of_big_int n] converts the value [n] of type [Big_int.big_int]
to an S-expression. *)
val sexp_of_nat : Nat.nat -> Sexp.t
(** [sexp_of_nat n] converts the value [n] of type [Nat.nat] to an
S-expression. *)
val sexp_of_num : Num.num -> Sexp.t
(** [sexp_of_num n] converts the value [n] of type [Num.num] to an
S-expression. *)
val sexp_of_ratio : Ratio.ratio -> Sexp.t
(** [sexp_of_ratio n] converts the value [n] of type [Ratio.ratio] to an
S-expression. *)
val sexp_of_ref : ('a -> Sexp.t) -> 'a ref -> Sexp.t
(** [sexp_of_ref conv r] converts the value [r] of type ['a ref] to
an S-expression. Uses [conv] to convert values of type ['a] to an
S-expression. *)
val sexp_of_lazy_t : ('a -> Sexp.t) -> 'a lazy_t -> Sexp.t
(** [sexp_of_lazy_t conv l] converts the value [l] of type ['a lazy_t] to
an S-expression. Uses [conv] to convert values of type ['a] to an
S-expression. *)
val sexp_of_option : ('a -> Sexp.t) -> 'a option -> Sexp.t
(** [sexp_of_option conv opt] converts the value [opt] of type ['a
option] to an S-expression. Uses [conv] to convert values of type
['a] to an S-expression. *)
val sexp_of_pair : ('a -> Sexp.t) -> ('b -> Sexp.t) -> 'a * 'b -> Sexp.t
(** [sexp_of_pair conv1 conv2 pair] converts a pair to an S-expression.
It uses its first argument to convert the first element of the pair,
and its second argument to convert the second element of the pair. *)
val sexp_of_triple :
('a -> Sexp.t) -> ('b -> Sexp.t) -> ('c -> Sexp.t) -> 'a * 'b * 'c -> Sexp.t
(** [sexp_of_triple conv1 conv2 conv3 triple] converts a triple to
an S-expression using [conv1], [conv2], and [conv3] to convert its
elements. *)
val sexp_of_list : ('a -> Sexp.t) -> 'a list -> Sexp.t
(** [sexp_of_list conv lst] converts the value [lst] of type ['a
list] to an S-expression. Uses [conv] to convert values of type
['a] to an S-expression. *)
val sexp_of_array : ('a -> Sexp.t) -> 'a array -> Sexp.t
(** [sexp_of_array conv ar] converts the value [ar] of type ['a
array] to an S-expression. Uses [conv] to convert values of type
['a] to an S-expression. *)
val sexp_of_hashtbl :
('a -> Sexp.t) -> ('b -> Sexp.t) -> ('a, 'b) Hashtbl.t -> Sexp.t
(** [sexp_of_hashtbl conv_key conv_value htbl] converts the value [htbl]
of type [('a, 'b) Hashtbl.t] to an S-expression. Uses [conv_key]
to convert the hashtable keys of type ['a], and [conv_value] to
convert hashtable values of type ['b] to S-expressions. *)
val sexp_of_bigstring : bigstring -> Sexp.t
(** [sexp_of_bigstring bstr] converts a bigstring (character bigarray
in C-layout) to an S-expression. *)
val sexp_of_float32_vec : float32_vec -> Sexp.t
(** [sexp_of_float32_vec vec] converts the one-dimensional bigarray
[vec] of 32-bit floats in Fortran-layout to an S-expression. *)
val sexp_of_float64_vec : float64_vec -> Sexp.t
(** [sexp_of_float64_vec vec] converts the one-dimensional bigarray
[vec] of 64-bit floats in Fortran-layout to an S-expression. *)
val sexp_of_vec : vec -> Sexp.t
(** [sexp_of_vec vec] same as {!Conv.sexp_of_float64_vec}. *)
val sexp_of_float32_mat : float32_mat -> Sexp.t
(** [sexp_of_float32_mat mat] converts the two-dimensional bigarray
[mat] of 32-bit floats in Fortran-layout to an S-expression. *)
val sexp_of_float64_mat : float64_mat -> Sexp.t
(** [sexp_of_float64_mat mat] converts the two-dimensional bigarray
[mat] of 64-bit floats in Fortran-layout to an S-expression. *)
val sexp_of_mat : mat -> Sexp.t
(** [sexp_of_mat mat] same as {!Conv.sexp_of_float64_mat}. *)
val sexp_of_opaque : 'a -> Sexp.t
(** [sexp_of_opaque x] converts the value [x] of opaque type to an
S-expression. This means the user need not provide converters,
but the result cannot be interpreted. *)
val sexp_of_fun : ('a -> 'b) -> Sexp.t
(** [sexp_of_fun f] converts the value [f] of function type to a
dummy S-expression. Functions cannot be serialized as S-expressions,
but at least a placeholder can be generated for pretty-printing. *)
val string_of__of__sexp_of : ('a -> Sexp.t) -> 'a -> string
(** [string_of__of__sexp_of conv x] converts the OCaml-value [x] to
an S-expression represented as a string by using conversion function
[conv]. *)
(** {6 Conversion of S-expressions to OCaml-values} *)
exception Of_sexp_error of exn * Sexp.t
(** [Of_sexp_error (exn, sexp)] the exception raised when an S-expression
could not be successfully converted to an OCaml-value. *)
val record_check_extra_fields : bool ref
(** [record_check_extra_fields] checks for extra (= unknown) fields
in record S-expressions. *)
val of_sexp_error : string -> Sexp.t -> 'a
(** [of_sexp_error reason sexp] @raise Of_sexp_error (Failure reason, sexp). *)
val of_sexp_error_exn : exn -> Sexp.t -> 'a
(** [of_sexp_error exc sexp] @raise Of_sexp_error (exc, sexp). *)
val unit_of_sexp : Sexp.t -> unit
(** [unit_of_sexp sexp] converts S-expression [sexp] to a value of type
[unit]. *)
val bool_of_sexp : Sexp.t -> bool
(** [bool_of_sexp sexp] converts S-expression [sexp] to a value of type
[bool]. *)
val string_of_sexp : Sexp.t -> string
(** [string_of_sexp sexp] converts S-expression [sexp] to a value of type
[string]. *)
val char_of_sexp : Sexp.t -> char
(** [char_of_sexp sexp] converts S-expression [sexp] to a value of type
[char]. *)
val int_of_sexp : Sexp.t -> int
(** [int_of_sexp sexp] converts S-expression [sexp] to a value of type
[int]. *)
val float_of_sexp : Sexp.t -> float
(** [float_of_sexp sexp] converts S-expression [sexp] to a value of type
[float]. *)
val int32_of_sexp : Sexp.t -> int32
(** [int32_of_sexp sexp] converts S-expression [sexp] to a value of type
[int32]. *)
val int64_of_sexp : Sexp.t -> int64
(** [int64_of_sexp sexp] converts S-expression [sexp] to a value of type
[int64]. *)
val nativeint_of_sexp : Sexp.t -> nativeint
(** [nativeint_of_sexp sexp] converts S-expression [sexp] to a value
of type [nativeint]. *)
val big_int_of_sexp : Sexp.t -> Big_int.big_int
(** [big_int_of_sexp sexp] converts S-expression [sexp] to a value
of type [Big_int.big_int]. *)
val nat_of_sexp : Sexp.t -> Nat.nat
(** [nat_of_sexp sexp] converts S-expression [sexp] to a value
of type [Nat.nat]. *)
val num_of_sexp : Sexp.t -> Num.num
(** [num_of_sexp sexp] converts S-expression [sexp] to a value
of type [Nat.num]. *)
val ratio_of_sexp : Sexp.t -> Ratio.ratio
(** [ratio_of_sexp sexp] converts S-expression [sexp] to a value
of type [Nat.ratio]. *)
val ref_of_sexp : (Sexp.t -> 'a) -> Sexp.t -> 'a ref
(** [ref_of_sexp conv sexp] converts S-expression [sexp] to a value
of type ['a ref] using conversion function [conv], which converts
an S-expression to a value of type ['a]. *)
val lazy_t_of_sexp : (Sexp.t -> 'a) -> Sexp.t -> 'a lazy_t
(** [lazy_t_of_sexp conv sexp] converts S-expression [sexp] to a value
of type ['a lazy_t] using conversion function [conv], which converts
an S-expression to a value of type ['a]. *)
val option_of_sexp : (Sexp.t -> 'a) -> Sexp.t -> 'a option
(** [option_of_sexp conv sexp] converts S-expression [sexp] to a value
of type ['a option] using conversion function [conv], which converts
an S-expression to a value of type ['a]. *)
val pair_of_sexp : (Sexp.t -> 'a) -> (Sexp.t -> 'b) -> Sexp.t -> 'a * 'b
(** [pair_of_sexp conv1 conv2 sexp] converts S-expression [sexp] to a pair
of type ['a * 'b] using conversion functions [conv1] and [conv2],
which convert S-expressions to values of type ['a] and ['b]
respectively. *)
val triple_of_sexp :
(Sexp.t -> 'a) -> (Sexp.t -> 'b) -> (Sexp.t -> 'c) -> Sexp.t -> 'a * 'b * 'c
(** [triple_of_sexp conv1 conv2 conv3 sexp] converts S-expression [sexp]
to a triple of type ['a * 'b * 'c] using conversion functions [conv1],
[conv2], and [conv3], which convert S-expressions to values of type
['a], ['b], and ['c] respectively. *)
val list_of_sexp : (Sexp.t -> 'a) -> Sexp.t -> 'a list
(** [list_of_sexp conv sexp] converts S-expression [sexp] to a value
of type ['a list] using conversion function [conv], which converts
an S-expression to a value of type ['a]. *)
val array_of_sexp : (Sexp.t -> 'a) -> Sexp.t -> 'a array
(** [array_of_sexp conv sexp] converts S-expression [sexp] to a value
of type ['a array] using conversion function [conv], which converts
an S-expression to a value of type ['a]. *)
val hashtbl_of_sexp :
(Sexp.t -> 'a) -> (Sexp.t -> 'b) -> Sexp.t -> ('a, 'b) Hashtbl.t
(** [hashtbl_of_sexp conv_key conv_value sexp] converts S-expression
[sexp] to a value of type [('a, 'b) Hashtbl.t] using conversion
function [conv_key], which converts an S-expression to hashtable
key of type ['a], and function [conv_value], which converts an
S-expression to hashtable value of type ['b]. *)
val bigstring_of_sexp : Sexp.t -> bigstring
(** [bigstring_of_sexp sexp] converts S-expression [sexp] to a
bigstring (character bigarray in C-layout). *)
val float32_vec_of_sexp : Sexp.t -> float32_vec
(** [float32_vec_of_sexp sexp] converts S-expression [sexp] to a
one-dimensional bigarray of 32-bit floats in Fortran-layout. *)
val float64_vec_of_sexp : Sexp.t -> float64_vec
(** [float64_vec_of_sexp sexp] converts S-expression [sexp] to a
one-dimensional bigarray of 64-bit floats in Fortran-layout. *)
val vec_of_sexp : Sexp.t -> vec
(** [vec_of_sexp sexp] same as {!float64_vec_of_sexp}. *)
val float32_mat_of_sexp : Sexp.t -> float32_mat
(** [float32_mat_of_sexp sexp] converts S-expression [sexp] to a
two-dimensional bigarray of 32-bit floats in Fortran-layout. *)
val float64_mat_of_sexp : Sexp.t -> float64_mat
(** [float64_mat_of_sexp sexp] converts S-expression [sexp] to a
two-dimensional bigarray of 64-bit floats in Fortran-layout. *)
val mat_of_sexp : Sexp.t -> mat
(** [mat_of_sexp sexp] same as {!Conv.float64_mat_of_sexp}. *)
val opaque_of_sexp : Sexp.t -> 'a
(** [opaque_of_sexp sexp] @raise Of_sexp_error when attempting to
convert an S-expression to an opaque value. *)
val fun_of_sexp : Sexp.t -> 'a
(** [fun_of_sexp sexp] @raise Of_sexp_error when attempting to
convert an S-expression to a function. *)
val of_string__of__of_sexp : (Sexp.t -> 'a) -> string -> 'a
(** [of_string__of__of_sexp conv str] converts the S-expression [str]
represented as a string to an OCaml-value by using conversion function
[conv]. *)
(** Exception converters *)
val sexp_of_exn : exn -> Sexp.t
(** [sexp_of_exn exc] converts exception [exc] to an S-expression.
If no suitable converter is found, the standard converter in
[Printexc] will be used to generate an atomic S-expression. *)
val sexp_of_exn_opt : exn -> Sexp.t option
(** [sexp_of_exn_opt exc] converts exception [exc] to [Some sexp].
If no suitable converter is found, [None] is returned instead. *)
module Exn_converter : sig
type t (** Type of handles for exception S-expression converters *)
val set_max_exn_tags : int -> unit
(** [set_max_exn_tags n] sets the maximum number of converters for exceptions
with the same template to [n]. If already existing handlers exceed
this number, they will remain at their current number until this number
is reduced due to garbage collection. New handlers will not be added
until [n] will not be exceeded. *)
val get_max_exn_tags : unit -> int
(** [set_max_exn_tags ()] return the maximum number of converters for
exceptions with the same template. *)
val add_auto : ?finalise : bool -> exn -> (exn -> Sexp.t) -> unit
(** [add_auto ?finalise templ sexp_of_exn] registers exception S-expression
converter [sexp_of_exn] for exceptions having same constructor as
template [templ], unless the number of stored handlers for the given
template exceeds [get_max_exn_tags ()], in which case the handler will
never be called. When [sexp_of_exn] is called, the passed exception
is guaranteed to match the template.
NOTE: if the exception belongs to a transient module, e.g. local modules
(including functor instantiations), first-class modules, etc., a manually
written [sexp_of_exn] must use [Obj.magic] internally to avoid matching
or creating the exception, otherwise the handler can never be reclaimed
once the exception ceases to exist. If [finalise] is [true], then
the exception will be automatically registered for removal with the GC
(default). Finalisation will not work with exceptions that have been
allocated outside the heap, which is the case for some standard ones
e.g. [Sys_error].
NOTE: Use with great caution, this function is primarily intended for
automated use! If unsure, use [add_slow] instead.
@param finalise default = [true]
*)
val add_slow : (exn -> Sexp.t option) -> t
(** [add_slow sexp_of_exn] registers exception S-expression converter
[sexp_of_exn] and returns a handle. Exception converters registered this
way are much slower than with [add], but this function does not require
an exception template. NOTE: if you call this function explicitly,
or the "sexp"-macro for exceptions from within local modules, you will
eventually have to unregister it manually with {!del}, otherwise there
is a space leak! *)
val del_slow : t -> unit
(** [del_slow handle] unregisters exception S-expression converter with
handle [handle]. In multi-threaded contexts it is not guaranteed
that the unregistered converter will not be called after this function
returns. *)
end
|