/usr/include/root/TMVA/MethodBase.h is in libroot-tmva-dev 5.34.14-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 | // @(#)root/tmva $Id$
// Author: Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Helge Voss, Kai Voss, Eckhard von Toerne, Jan Therhaag
/**********************************************************************************
* Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
* Package: TMVA *
* Class : MethodBase *
* Web : http://tmva.sourceforge.net *
* *
* Description: *
* Virtual base class for all MVA method *
* *
* Authors (alphabetical): *
* Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
* Peter Speckmayer <peter.speckmayer@cern.ch> - CERN, Switzerland *
* Joerg Stelzer <Joerg.Stelzer@cern.ch> - CERN, Switzerland *
* Jan Therhaag <Jan.Therhaag@cern.ch> - U of Bonn, Germany *
* Eckhard v. Toerne <evt@uni-bonn.de> - U of Bonn, Germany *
* Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
* Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
* *
* Copyright (c) 2005-2011: *
* CERN, Switzerland *
* U. of Victoria, Canada *
* MPI-K Heidelberg, Germany *
* U. of Bonn, Germany *
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted according to the terms listed in LICENSE *
* (http://tmva.sourceforge.net/LICENSE) *
**********************************************************************************/
#ifndef ROOT_TMVA_MethodBase
#define ROOT_TMVA_MethodBase
//////////////////////////////////////////////////////////////////////////
// //
// MethodBase //
// //
// Virtual base class for all TMVA method //
// //
//////////////////////////////////////////////////////////////////////////
#include <iosfwd>
#include <vector>
#include <map>
#include "assert.h"
#ifndef ROOT_TString
#include "TString.h"
#endif
#ifndef ROOT_TMVA_IMethod
#include "TMVA/IMethod.h"
#endif
#ifndef ROOT_TMVA_Configurable
#include "TMVA/Configurable.h"
#endif
#ifndef ROOT_TMVA_Types
#include "TMVA/Types.h"
#endif
#ifndef ROOT_TMVA_DataSet
#include "TMVA/DataSet.h"
#endif
#ifndef ROOT_TMVA_Event
#include "TMVA/Event.h"
#endif
#ifndef ROOT_TMVA_TransformationHandler
#include "TMVA/TransformationHandler.h"
#endif
#ifndef ROOT_TMVA_OptimizeConfigParameters
#include "TMVA/OptimizeConfigParameters.h"
#endif
class TGraph;
class TTree;
class TDirectory;
class TSpline;
class TH1F;
class TH1D;
namespace TMVA {
class Ranking;
class PDF;
class TSpline1;
class MethodCuts;
class MethodBoost;
class DataSetInfo;
class MethodBase : virtual public IMethod, public Configurable {
friend class Factory;
public:
enum EWeightFileType { kROOT=0, kTEXT };
// default constructur
MethodBase( const TString& jobName,
Types::EMVA methodType,
const TString& methodTitle,
DataSetInfo& dsi,
const TString& theOption = "",
TDirectory* theBaseDir = 0 );
// constructor used for Testing + Application of the MVA, only (no training),
// using given weight file
MethodBase( Types::EMVA methodType,
DataSetInfo& dsi,
const TString& weightFile,
TDirectory* theBaseDir = 0 );
// default destructur
virtual ~MethodBase();
// declaration, processing and checking of configuration options
void SetupMethod();
void ProcessSetup();
virtual void CheckSetup(); // may be overwritten by derived classes
// ---------- main training and testing methods ------------------------------
// prepare tree branch with the method's discriminating variable
void AddOutput( Types::ETreeType type, Types::EAnalysisType analysisType );
// performs classifier training
// calls methods Train() implemented by derived classes
void TrainMethod();
// optimize tuning parameters
virtual std::map<TString,Double_t> OptimizeTuningParameters(TString fomType="ROCIntegral", TString fitType="FitGA");
virtual void SetTuneParameters(std::map<TString,Double_t> tuneParameters);
virtual void Train() = 0;
// store and retrieve time used for training
void SetTrainTime( Double_t trainTime ) { fTrainTime = trainTime; }
Double_t GetTrainTime() const { return fTrainTime; }
// store and retrieve time used for testing
void SetTestTime ( Double_t testTime ) { fTestTime = testTime; }
Double_t GetTestTime () const { return fTestTime; }
// performs classifier testing
virtual void TestClassification();
// performs multiclass classifier testing
virtual void TestMulticlass();
// performs regression testing
virtual void TestRegression( Double_t& bias, Double_t& biasT,
Double_t& dev, Double_t& devT,
Double_t& rms, Double_t& rmsT,
Double_t& mInf, Double_t& mInfT, // mutual information
Double_t& corr,
Types::ETreeType type );
// options treatment
virtual void Init() = 0;
virtual void DeclareOptions() = 0;
virtual void ProcessOptions() = 0;
virtual void DeclareCompatibilityOptions(); // declaration of past options
// reset the Method --> As if it was not yet trained, just instantiated
// virtual void Reset() = 0;
//for the moment, I provide a dummy (that would not work) default, just to make
// compilation/running w/o parameter optimisation still possible
virtual void Reset(){return;}
// classifier response:
// some methods may return a per-event error estimate
// error calculation is skipped if err==0
virtual Double_t GetMvaValue( Double_t* errLower = 0, Double_t* errUpper = 0) = 0;
// signal/background classification response
Double_t GetMvaValue( const TMVA::Event* const ev, Double_t* err = 0, Double_t* errUpper = 0 );
protected:
// helper function to set errors to -1
void NoErrorCalc(Double_t* const err, Double_t* const errUpper);
public:
// regression response
const std::vector<Float_t>& GetRegressionValues(const TMVA::Event* const ev){
fTmpEvent = ev;
const std::vector<Float_t>* ptr = &GetRegressionValues();
fTmpEvent = 0;
return (*ptr);
}
virtual const std::vector<Float_t>& GetRegressionValues() {
std::vector<Float_t>* ptr = new std::vector<Float_t>(0);
return (*ptr);
}
// multiclass classification response
virtual const std::vector<Float_t>& GetMulticlassValues() {
std::vector<Float_t>* ptr = new std::vector<Float_t>(0);
return (*ptr);
}
// probability of classifier response (mvaval) to be signal (requires "CreateMvaPdf" option set)
virtual Double_t GetProba( const Event *ev); // the simple one, automatically calcualtes the mvaVal and uses the SAME sig/bkg ratio as given in the training sample (typically 50/50 .. (NormMode=EqualNumEvents) but can be different)
virtual Double_t GetProba( Double_t mvaVal, Double_t ap_sig );
// Rarity of classifier response (signal or background (default) is uniform in [0,1])
virtual Double_t GetRarity( Double_t mvaVal, Types::ESBType reftype = Types::kBackground ) const;
// create ranking
virtual const Ranking* CreateRanking() = 0;
// make ROOT-independent C++ class
virtual void MakeClass( const TString& classFileName = TString("") ) const;
// print help message
void PrintHelpMessage() const;
//
// streamer methods for training information (creates "weight" files) --------
//
public:
void WriteStateToFile () const;
void ReadStateFromFile ();
protected:
// the actual "weights"
virtual void AddWeightsXMLTo ( void* parent ) const = 0;
virtual void ReadWeightsFromXML ( void* wghtnode ) = 0;
virtual void ReadWeightsFromStream( std::istream& ) = 0; // backward compatibility
virtual void ReadWeightsFromStream( TFile& ) {} // backward compatibility
private:
friend class MethodCategory;
friend class MethodCompositeBase;
void WriteStateToXML ( void* parent ) const;
void ReadStateFromXML ( void* parent );
void WriteStateToStream ( std::ostream& tf ) const; // needed for MakeClass
void WriteVarsToStream ( std::ostream& tf, const TString& prefix = "" ) const; // needed for MakeClass
public: // these two need to be public, they are used to read in-memory weight-files
void ReadStateFromStream ( std::istream& tf ); // backward compatibility
void ReadStateFromStream ( TFile& rf ); // backward compatibility
void ReadStateFromXMLString( const char* xmlstr ); // for reading from memory
private:
// the variable information
void AddVarsXMLTo ( void* parent ) const;
void AddSpectatorsXMLTo ( void* parent ) const;
void AddTargetsXMLTo ( void* parent ) const;
void AddClassesXMLTo ( void* parent ) const;
void ReadVariablesFromXML ( void* varnode );
void ReadSpectatorsFromXML( void* specnode);
void ReadTargetsFromXML ( void* tarnode );
void ReadClassesFromXML ( void* clsnode );
void ReadVarsFromStream ( std::istream& istr ); // backward compatibility
public:
// ---------------------------------------------------------------------------
// write evaluation histograms into target file
virtual void WriteEvaluationHistosToFile(Types::ETreeType treetype);
// write classifier-specific monitoring information to target file
virtual void WriteMonitoringHistosToFile() const;
// ---------- public evaluation methods --------------------------------------
// individual initialistion for testing of each method
// overload this one for individual initialisation of the testing,
// it is then called automatically within the global "TestInit"
// variables (and private menber functions) for the Evaluation:
// get the effiency. It fills a histogram for efficiency/vs/bkg
// and returns the one value fo the efficiency demanded for
// in the TString argument. (Watch the string format)
virtual Double_t GetEfficiency( const TString&, Types::ETreeType, Double_t& err );
virtual Double_t GetTrainingEfficiency(const TString& );
virtual std::vector<Float_t> GetMulticlassEfficiency( std::vector<std::vector<Float_t> >& purity );
virtual std::vector<Float_t> GetMulticlassTrainingEfficiency(std::vector<std::vector<Float_t> >& purity );
virtual Double_t GetSignificance() const;
virtual Double_t GetROCIntegral(TH1D *histS, TH1D *histB) const;
virtual Double_t GetROCIntegral(PDF *pdfS=0, PDF *pdfB=0) const;
virtual Double_t GetMaximumSignificance( Double_t SignalEvents, Double_t BackgroundEvents,
Double_t& optimal_significance_value ) const;
virtual Double_t GetSeparation( TH1*, TH1* ) const;
virtual Double_t GetSeparation( PDF* pdfS = 0, PDF* pdfB = 0 ) const;
virtual void GetRegressionDeviation(UInt_t tgtNum, Types::ETreeType type, Double_t& stddev,Double_t& stddev90Percent ) const;
// ---------- public accessors -----------------------------------------------
// classifier naming (a lot of names ... aren't they ;-)
const TString& GetJobName () const { return fJobName; }
const TString& GetMethodName () const { return fMethodName; }
TString GetMethodTypeName() const { return Types::Instance().GetMethodName(fMethodType); }
Types::EMVA GetMethodType () const { return fMethodType; }
const char* GetName () const { return fMethodName.Data(); }
const TString& GetTestvarName () const { return fTestvar; }
const TString GetProbaName () const { return fTestvar + "_Proba"; }
TString GetWeightFileName() const;
// build classifier name in Test tree
// MVA prefix (e.g., "TMVA_")
void SetTestvarName ( const TString & v="" ) { fTestvar = (v=="") ? ("MVA_" + GetMethodName()) : v; }
// number of input variable used by classifier
UInt_t GetNvar() const { return DataInfo().GetNVariables(); }
UInt_t GetNVariables() const { return DataInfo().GetNVariables(); }
UInt_t GetNTargets() const { return DataInfo().GetNTargets(); };
// internal names and expressions of input variables
const TString& GetInputVar ( Int_t i ) const { return DataInfo().GetVariableInfo(i).GetInternalName(); }
const TString& GetInputLabel( Int_t i ) const { return DataInfo().GetVariableInfo(i).GetLabel(); }
const TString& GetInputTitle( Int_t i ) const { return DataInfo().GetVariableInfo(i).GetTitle(); }
// normalisation and limit accessors
Double_t GetMean( Int_t ivar ) const { return GetTransformationHandler().GetMean(ivar); }
Double_t GetRMS ( Int_t ivar ) const { return GetTransformationHandler().GetRMS(ivar); }
Double_t GetXmin( Int_t ivar ) const { return GetTransformationHandler().GetMin(ivar); }
Double_t GetXmax( Int_t ivar ) const { return GetTransformationHandler().GetMax(ivar); }
// sets the minimum requirement on the MVA output to declare an event signal-like
Double_t GetSignalReferenceCut() const { return fSignalReferenceCut; }
Double_t GetSignalReferenceCutOrientation() const { return fSignalReferenceCutOrientation; }
// sets the minimum requirement on the MVA output to declare an event signal-like
void SetSignalReferenceCut( Double_t cut ) { fSignalReferenceCut = cut; }
void SetSignalReferenceCutOrientation( Double_t cutOrientation ) { fSignalReferenceCutOrientation = cutOrientation; }
// pointers to ROOT directories
TDirectory* BaseDir() const;
TDirectory* MethodBaseDir() const;
void SetMethodDir ( TDirectory* methodDir ) { fBaseDir = fMethodBaseDir = methodDir; }
void SetBaseDir( TDirectory* methodDir ){ fBaseDir = methodDir; }
void SetMethodBaseDir( TDirectory* methodDir ){ fMethodBaseDir = methodDir; }
// the TMVA version can be obtained and checked using
// if (GetTrainingTMVAVersionCode()>TMVA_VERSION(3,7,2)) {...}
// or
// if (GetTrainingROOTVersionCode()>ROOT_VERSION(5,15,5)) {...}
UInt_t GetTrainingTMVAVersionCode() const { return fTMVATrainingVersion; }
UInt_t GetTrainingROOTVersionCode() const { return fROOTTrainingVersion; }
TString GetTrainingTMVAVersionString() const;
TString GetTrainingROOTVersionString() const;
TransformationHandler& GetTransformationHandler(Bool_t takeReroutedIfAvailable=true)
{
if(fTransformationPointer && takeReroutedIfAvailable) return *fTransformationPointer; else return fTransformation;
}
const TransformationHandler& GetTransformationHandler(Bool_t takeReroutedIfAvailable=true) const
{
if(fTransformationPointer && takeReroutedIfAvailable) return *fTransformationPointer; else return fTransformation;
}
void RerouteTransformationHandler (TransformationHandler* fTargetTransformation) { fTransformationPointer=fTargetTransformation; }
// ---------- event accessors ------------------------------------------------
// returns reference to data set
// NOTE: this DataSet is the "original" dataset, i.e. the one seen by ALL Classifiers WITHOUT transformation
DataSet* Data() const { return DataInfo().GetDataSet(); }
DataSetInfo& DataInfo() const { return fDataSetInfo; }
mutable const Event* fTmpEvent; //! temporary event when testing on a different DataSet than the own one
// event reference and update
// NOTE: these Event accessors make sure that you get the events transformed according to the
// particular clasifiers transformation chosen
UInt_t GetNEvents () const { return Data()->GetNEvents(); }
const Event* GetEvent () const;
const Event* GetEvent ( const TMVA::Event* ev ) const;
const Event* GetEvent ( Long64_t ievt ) const;
const Event* GetEvent ( Long64_t ievt , Types::ETreeType type ) const;
const Event* GetTrainingEvent( Long64_t ievt ) const;
const Event* GetTestingEvent ( Long64_t ievt ) const;
const std::vector<TMVA::Event*>& GetEventCollection( Types::ETreeType type );
// ---------- public auxiliary methods ---------------------------------------
// this method is used to decide whether an event is signal- or background-like
// the reference cut "xC" is taken to be where
// Int_[-oo,xC] { PDF_S(x) dx } = Int_[xC,+oo] { PDF_B(x) dx }
virtual Bool_t IsSignalLike();
virtual Bool_t IsSignalLike(Double_t mvaVal);
Bool_t HasMVAPdfs() const { return fHasMVAPdfs; }
virtual void SetAnalysisType( Types::EAnalysisType type ) { fAnalysisType = type; }
Types::EAnalysisType GetAnalysisType() const { return fAnalysisType; }
Bool_t DoRegression() const { return fAnalysisType == Types::kRegression; }
Bool_t DoMulticlass() const { return fAnalysisType == Types::kMulticlass; }
// setter method for suppressing writing to XML and writing of standalone classes
void DisableWriting(Bool_t setter){ fDisableWriting = setter; }
protected:
// ---------- protected acccessors -------------------------------------------
//TDirectory* LocalTDir() const { return Data().LocalRootDir(); }
// weight file name and directory (given by global config variable)
void SetWeightFileName( TString );
const TString& GetWeightFileDir() const { return fFileDir; }
void SetWeightFileDir( TString fileDir );
// are input variables normalised ?
Bool_t IsNormalised() const { return fNormalise; }
void SetNormalised( Bool_t norm ) { fNormalise = norm; }
// set number of input variables (only used by MethodCuts, could perhaps be removed)
// void SetNvar( Int_t n ) { fNvar = n; }
// verbose and help flags
Bool_t Verbose() const { return fVerbose; }
Bool_t Help () const { return fHelp; }
// ---------- protected event and tree accessors -----------------------------
// names of input variables (if the original names are expressions, they are
// transformed into regexps)
const TString& GetInternalVarName( Int_t ivar ) const { return (*fInputVars)[ivar]; }
const TString& GetOriginalVarName( Int_t ivar ) const { return DataInfo().GetVariableInfo(ivar).GetExpression(); }
Bool_t HasTrainingTree() const { return Data()->GetNTrainingEvents() != 0; }
// ---------- protected auxiliary methods ------------------------------------
protected:
// make ROOT-independent C++ class for classifier response (classifier-specific implementation)
virtual void MakeClassSpecific( std::ostream&, const TString& = "" ) const {}
// header and auxiliary classes
virtual void MakeClassSpecificHeader( std::ostream&, const TString& = "" ) const {}
// static pointer to this object - required for ROOT finder (to be solved differently)
static MethodBase* GetThisBase();
// some basic statistical analysis
void Statistics( Types::ETreeType treeType, const TString& theVarName,
Double_t&, Double_t&, Double_t&,
Double_t&, Double_t&, Double_t& );
// if TRUE, write weights only to text files
Bool_t TxtWeightsOnly() const { return kTRUE; }
protected:
// access to event information that needs method-specific information
Bool_t IsConstructedFromWeightFile() const { return fConstructedFromWeightFile; }
private:
// ---------- private definitions --------------------------------------------
// Initialisation
void InitBase();
void DeclareBaseOptions();
void ProcessBaseOptions();
// used in efficiency computation
enum ECutOrientation { kNegative = -1, kPositive = +1 };
ECutOrientation GetCutOrientation() const { return fCutOrientation; }
// ---------- private acccessors ---------------------------------------------
// reset required for RootFinder
void ResetThisBase();
// ---------- private auxiliary methods --------------------------------------
// PDFs for classifier response (required to compute signal probability and Rarity)
void CreateMVAPdfs();
// for root finder
static Double_t IGetEffForRoot( Double_t ); // interface
Double_t GetEffForRoot ( Double_t ); // implementation
// used for file parsing
Bool_t GetLine( std::istream& fin, char * buf );
// fill test tree with classification or regression results
virtual void AddClassifierOutput ( Types::ETreeType type );
virtual void AddClassifierOutputProb( Types::ETreeType type );
virtual void AddRegressionOutput ( Types::ETreeType type );
virtual void AddMulticlassOutput ( Types::ETreeType type );
private:
void AddInfoItem( void* gi, const TString& name,
const TString& value) const;
static void CreateVariableTransforms(const TString& trafoDefinition,
TMVA::DataSetInfo& dataInfo,
TMVA::TransformationHandler& transformationHandler,
TMVA::MsgLogger& log );
// ========== class members ==================================================
protected:
// direct accessors
Ranking* fRanking; // pointer to ranking object (created by derived classifiers)
std::vector<TString>* fInputVars; // vector of input variables used in MVA
// histogram binning
Int_t fNbins; // number of bins in input variable histograms
Int_t fNbinsMVAoutput; // number of bins in MVA output histograms
Int_t fNbinsH; // number of bins in evaluation histograms
Types::EAnalysisType fAnalysisType; // method-mode : true --> regression, false --> classification
std::vector<Float_t>* fRegressionReturnVal; // holds the return-values for the regression
std::vector<Float_t>* fMulticlassReturnVal; // holds the return-values for the multiclass classification
private:
// MethodCuts redefines some of the evaluation variables and histograms -> must access private members
friend class MethodCuts;
Bool_t fDisableWriting; //! set to true in order to suppress writing to XML
// data sets
DataSetInfo& fDataSetInfo; //! the data set information (sometimes needed)
Double_t fSignalReferenceCut; // minimum requirement on the MVA output to declare an event signal-like
Double_t fSignalReferenceCutOrientation; // minimum requirement on the MVA output to declare an event signal-like
Types::ESBType fVariableTransformType; // this is the event type (sig or bgd) assumed for variable transform
// naming and versioning
TString fJobName; // name of job -> user defined, appears in weight files
TString fMethodName; // name of the method (set in derived class)
Types::EMVA fMethodType; // type of method (set in derived class)
TString fTestvar; // variable used in evaluation, etc (mostly the MVA)
UInt_t fTMVATrainingVersion; // TMVA version used for training
UInt_t fROOTTrainingVersion; // ROOT version used for training
Bool_t fConstructedFromWeightFile; // is it obtained from weight file?
// Directory structure: fMethodBaseDir/fBaseDir
// where the first directory name is defined by the method type
// and the second is user supplied (the title given in Factory::BookMethod())
TDirectory* fBaseDir; // base directory for the instance, needed to know where to jump back from localDir
mutable TDirectory* fMethodBaseDir; // base directory for the method
TString fParentDir; // method parent name, like booster name
TString fFileDir; // unix sub-directory for weight files (default: "weights")
TString fWeightFile; // weight file name
private:
TH1* fEffS; // efficiency histogram for rootfinder
PDF* fDefaultPDF; // default PDF definitions
PDF* fMVAPdfS; // signal MVA PDF
PDF* fMVAPdfB; // background MVA PDF
TH1D* fmvaS; // PDFs of MVA distribution (signal)
TH1D* fmvaB; // PDFs of MVA distribution (background)
PDF* fSplS; // PDFs of MVA distribution (signal)
PDF* fSplB; // PDFs of MVA distribution (background)
TSpline* fSpleffBvsS; // splines for signal eff. versus background eff.
PDF* fSplTrainS; // PDFs of training MVA distribution (signal)
PDF* fSplTrainB; // PDFs of training MVA distribution (background)
TSpline* fSplTrainEffBvsS; // splines for training signal eff. versus background eff.
private:
// basic statistics quantities of MVA
Double_t fMeanS; // mean (signal)
Double_t fMeanB; // mean (background)
Double_t fRmsS; // RMS (signal)
Double_t fRmsB; // RMS (background)
Double_t fXmin; // minimum (signal and background)
Double_t fXmax; // maximum (signal and background)
// variable preprocessing
TString fVarTransformString; // labels variable transform method
TransformationHandler* fTransformationPointer; // pointer to the rest of transformations
TransformationHandler fTransformation; // the list of transformations
// help and verbosity
Bool_t fVerbose; // verbose flag
TString fVerbosityLevelString; // verbosity level (user input string)
EMsgType fVerbosityLevel; // verbosity level
Bool_t fHelp; // help flag
Bool_t fHasMVAPdfs; // MVA Pdfs are created for this classifier
Bool_t fIgnoreNegWeightsInTraining;// If true, events with negative weights are not used in training
protected:
Bool_t IgnoreEventsWithNegWeightsInTraining() const { return fIgnoreNegWeightsInTraining; }
// for signal/background
UInt_t fSignalClass; // index of the Signal-class
UInt_t fBackgroundClass; // index of the Background-class
private:
// timing variables
Double_t fTrainTime; // for timing measurements
Double_t fTestTime; // for timing measurements
// orientation of cut: depends on signal and background mean values
ECutOrientation fCutOrientation; // +1 if Sig>Bkg, -1 otherwise
// for root finder
TSpline1* fSplRefS; // helper splines for RootFinder (signal)
TSpline1* fSplRefB; // helper splines for RootFinder (background)
TSpline1* fSplTrainRefS; // helper splines for RootFinder (signal)
TSpline1* fSplTrainRefB; // helper splines for RootFinder (background)
mutable std::vector<const std::vector<TMVA::Event*>*> fEventCollections; // if the method needs the complete event-collection, the transformed event coll. ist stored here.
public:
Bool_t fSetupCompleted; // is method setup
private:
// this carrier
static MethodBase* fgThisBase; // this pointer
// ===== depreciated options, kept for backward compatibility =====
private:
Bool_t fNormalise; // normalise input variables
Bool_t fUseDecorr; // synonymous for decorrelation
TString fVariableTransformTypeString; // labels variable transform type
Bool_t fTxtWeightsOnly; // if TRUE, write weights only to text files
Int_t fNbinsMVAPdf; // number of bins used in histogram that creates PDF
Int_t fNsmoothMVAPdf; // number of times a histogram is smoothed before creating the PDF
protected:
ClassDef(MethodBase,0) // Virtual base class for all TMVA method
};
} // namespace TMVA
// ========== INLINE FUNCTIONS =========================================================
//_______________________________________________________________________
inline const TMVA::Event* TMVA::MethodBase::GetEvent( const TMVA::Event* ev ) const
{
return GetTransformationHandler().Transform(ev);
}
inline const TMVA::Event* TMVA::MethodBase::GetEvent() const
{
if(fTmpEvent)
return GetTransformationHandler().Transform(fTmpEvent);
else
return GetTransformationHandler().Transform(Data()->GetEvent());
}
inline const TMVA::Event* TMVA::MethodBase::GetEvent( Long64_t ievt ) const
{
assert(fTmpEvent==0);
return GetTransformationHandler().Transform(Data()->GetEvent(ievt));
}
inline const TMVA::Event* TMVA::MethodBase::GetEvent( Long64_t ievt, Types::ETreeType type ) const
{
assert(fTmpEvent==0);
return GetTransformationHandler().Transform(Data()->GetEvent(ievt, type));
}
inline const TMVA::Event* TMVA::MethodBase::GetTrainingEvent( Long64_t ievt ) const
{
assert(fTmpEvent==0);
return GetEvent(ievt, Types::kTraining);
}
inline const TMVA::Event* TMVA::MethodBase::GetTestingEvent( Long64_t ievt ) const
{
assert(fTmpEvent==0);
return GetEvent(ievt, Types::kTesting);
}
#endif
|