/usr/include/root/Math/MatrixRepresentationsStatic.h is in libroot-math-smatrix-dev 5.34.14-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | // @(#)root/smatrix:$Id$
// Author: L. Moneta, J. Palacios 2006
#ifndef ROOT_Math_MatrixRepresentationsStatic
#define ROOT_Math_MatrixRepresentationsStatic 1
// Include files
/**
@defgroup MatRep SMatrix Storage Representation
@ingroup SMatrixGroup
@author Juan Palacios
@date 2006-01-15
Classes MatRepStd and MatRepSym for generic and symmetric matrix
data storage and manipulation. Define data storage and access, plus
operators =, +=, -=, ==.
*/
#ifndef ROOT_Math_StaticCheck
#include "Math/StaticCheck.h"
#endif
namespace ROOT {
namespace Math {
//________________________________________________________________________________
/**
MatRepStd
Standard Matrix representation for a general D1 x D2 matrix.
This class is itself a template on the contained type T, the number of rows and the number of columns.
Its data member is an array T[nrows*ncols] containing the matrix data.
The data are stored in the row-major C convention.
For example, for a matrix, M, of size 3x3, the data \f$ \left[a_0,a_1,a_2,.......,a_7,a_8 \right] \f$d are stored in the following order:
\f[
M = \left( \begin{array}{ccc}
a_0 & a_1 & a_2 \\
a_3 & a_4 & a_5 \\
a_6 & a_7 & a_8 \end{array} \right)
\f]
@ingroup MatRep
*/
template <class T, unsigned int D1, unsigned int D2=D1>
class MatRepStd {
public:
typedef T value_type;
inline const T& operator()(unsigned int i, unsigned int j) const {
return fArray[i*D2+j];
}
inline T& operator()(unsigned int i, unsigned int j) {
return fArray[i*D2+j];
}
inline T& operator[](unsigned int i) { return fArray[i]; }
inline const T& operator[](unsigned int i) const { return fArray[i]; }
inline T apply(unsigned int i) const { return fArray[i]; }
inline T* Array() { return fArray; }
inline const T* Array() const { return fArray; }
template <class R>
inline MatRepStd<T, D1, D2>& operator+=(const R& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] += rhs[i];
return *this;
}
template <class R>
inline MatRepStd<T, D1, D2>& operator-=(const R& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] -= rhs[i];
return *this;
}
template <class R>
inline MatRepStd<T, D1, D2>& operator=(const R& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] = rhs[i];
return *this;
}
template <class R>
inline bool operator==(const R& rhs) const {
bool rc = true;
for(unsigned int i=0; i<kSize; ++i) {
rc = rc && (fArray[i] == rhs[i]);
}
return rc;
}
enum {
/// return no. of matrix rows
kRows = D1,
/// return no. of matrix columns
kCols = D2,
/// return no of elements: rows*columns
kSize = D1*D2
};
private:
//T __attribute__ ((aligned (16))) fArray[kSize];
T fArray[kSize];
};
// template<unigned int D>
// struct Creator {
// static const RowOffsets<D> & Offsets() {
// static RowOffsets<D> off;
// return off;
// }
/**
Static structure to keep the conversion from (i,j) to offsets in the storage data for a
symmetric matrix
*/
template<unsigned int D>
struct RowOffsets {
inline RowOffsets() {
int v[D];
v[0]=0;
for (unsigned int i=1; i<D; ++i)
v[i]=v[i-1]+i;
for (unsigned int i=0; i<D; ++i) {
for (unsigned int j=0; j<=i; ++j)
fOff[i*D+j] = v[i]+j;
for (unsigned int j=i+1; j<D; ++j)
fOff[i*D+j] = v[j]+i ;
}
}
inline int operator()(unsigned int i, unsigned int j) const { return fOff[i*D+j]; }
inline int apply(unsigned int i) const { return fOff[i]; }
int fOff[D*D];
};
// Make the lookup tables available at compile time:
// Add them to a namespace?
static const int fOff1x1[] = {0};
static const int fOff2x2[] = {0, 1, 1, 2};
static const int fOff3x3[] = {0, 1, 3, 1, 2, 4, 3, 4, 5};
static const int fOff4x4[] = {0, 1, 3, 6, 1, 2, 4, 7, 3, 4, 5, 8, 6, 7, 8, 9};
static const int fOff5x5[] = {0, 1, 3, 6, 10, 1, 2, 4, 7, 11, 3, 4, 5, 8, 12, 6, 7, 8, 9, 13, 10, 11, 12, 13, 14};
static const int fOff6x6[] = {0, 1, 3, 6, 10, 15, 1, 2, 4, 7, 11, 16, 3, 4, 5, 8, 12, 17, 6, 7, 8, 9, 13, 18, 10, 11, 12, 13, 14, 19, 15, 16, 17, 18, 19, 20};
static const int fOff7x7[] = {0, 1, 3, 6, 10, 15, 21, 1, 2, 4, 7, 11, 16, 22, 3, 4, 5, 8, 12, 17, 23, 6, 7, 8, 9, 13, 18, 24, 10, 11, 12, 13, 14, 19, 25, 15, 16, 17, 18, 19, 20, 26, 21, 22, 23, 24, 25, 26, 27};
static const int fOff8x8[] = {0, 1, 3, 6, 10, 15, 21, 28, 1, 2, 4, 7, 11, 16, 22, 29, 3, 4, 5, 8, 12, 17, 23, 30, 6, 7, 8, 9, 13, 18, 24, 31, 10, 11, 12, 13, 14, 19, 25, 32, 15, 16, 17, 18, 19, 20, 26, 33, 21, 22, 23, 24, 25, 26, 27, 34, 28, 29, 30, 31, 32, 33, 34, 35};
static const int fOff9x9[] = {0, 1, 3, 6, 10, 15, 21, 28, 36, 1, 2, 4, 7, 11, 16, 22, 29, 37, 3, 4, 5, 8, 12, 17, 23, 30, 38, 6, 7, 8, 9, 13, 18, 24, 31, 39, 10, 11, 12, 13, 14, 19, 25, 32, 40, 15, 16, 17, 18, 19, 20, 26, 33, 41, 21, 22, 23, 24, 25, 26, 27, 34, 42, 28, 29, 30, 31, 32, 33, 34, 35, 43, 36, 37, 38, 39, 40, 41, 42, 43, 44};
static const int fOff10x10[] = {0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 3, 4, 5, 8, 12, 17, 23, 30, 38, 47, 6, 7, 8, 9, 13, 18, 24, 31, 39, 48, 10, 11, 12, 13, 14, 19, 25, 32, 40, 49, 15, 16, 17, 18, 19, 20, 26, 33, 41, 50, 21, 22, 23, 24, 25, 26, 27, 34, 42, 51, 28, 29, 30, 31, 32, 33, 34, 35, 43, 52, 36, 37, 38, 39, 40, 41, 42, 43, 44, 53, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54};
template<>
struct RowOffsets<1> {
RowOffsets() {}
int operator()(unsigned int , unsigned int ) const { return 0; } // Just one element
int apply(unsigned int ) const { return 0; }
};
template<>
struct RowOffsets<2> {
RowOffsets() {}
int operator()(unsigned int i, unsigned int j) const { return i+j; /*fOff2x2[i*2+j];*/ }
int apply(unsigned int i) const { return fOff2x2[i]; }
};
template<>
struct RowOffsets<3> {
RowOffsets() {}
int operator()(unsigned int i, unsigned int j) const { return fOff3x3[i*3+j]; }
int apply(unsigned int i) const { return fOff3x3[i]; }
};
template<>
struct RowOffsets<4> {
RowOffsets() {}
int operator()(unsigned int i, unsigned int j) const { return fOff4x4[i*4+j]; }
int apply(unsigned int i) const { return fOff4x4[i]; }
};
template<>
struct RowOffsets<5> {
inline RowOffsets() {}
inline int operator()(unsigned int i, unsigned int j) const { return fOff5x5[i*5+j]; }
// int operator()(unsigned int i, unsigned int j) const {
// if(j <= i) return (i * (i + 1)) / 2 + j;
// else return (j * (j + 1)) / 2 + i;
// }
inline int apply(unsigned int i) const { return fOff5x5[i]; }
};
template<>
struct RowOffsets<6> {
RowOffsets() {}
int operator()(unsigned int i, unsigned int j) const { return fOff6x6[i*6+j]; }
int apply(unsigned int i) const { return fOff6x6[i]; }
};
template<>
struct RowOffsets<7> {
RowOffsets() {}
int operator()(unsigned int i, unsigned int j) const { return fOff7x7[i*7+j]; }
int apply(unsigned int i) const { return fOff7x7[i]; }
};
template<>
struct RowOffsets<8> {
RowOffsets() {}
int operator()(unsigned int i, unsigned int j) const { return fOff8x8[i*8+j]; }
int apply(unsigned int i) const { return fOff8x8[i]; }
};
template<>
struct RowOffsets<9> {
RowOffsets() {}
int operator()(unsigned int i, unsigned int j) const { return fOff9x9[i*9+j]; }
int apply(unsigned int i) const { return fOff9x9[i]; }
};
template<>
struct RowOffsets<10> {
RowOffsets() {}
int operator()(unsigned int i, unsigned int j) const { return fOff10x10[i*10+j]; }
int apply(unsigned int i) const { return fOff10x10[i]; }
};
//_________________________________________________________________________________
/**
MatRepSym
Matrix storage representation for a symmetric matrix of dimension NxN
This class is a template on the contained type and on the symmetric matrix size, N.
It has as data member an array of type T of size N*(N+1)/2,
containing the lower diagonal block of the matrix.
The order follows the lower diagonal block, still in a row-major convention.
For example for a symmetric 3x3 matrix the order of the 6 elements
\f$ \left[a_0,a_1.....a_5 \right]\f$ is:
\f[
M = \left( \begin{array}{ccc}
a_0 & a_1 & a_3 \\
a_1 & a_2 & a_4 \\
a_3 & a_4 & a_5 \end{array} \right)
\f]
@ingroup MatRep
*/
template <class T, unsigned int D>
class MatRepSym {
public:
MatRepSym() :fOff(0) { CreateOffsets(); }
typedef T value_type;
inline const T& operator()(unsigned int i, unsigned int j) const {
return fArray[Offsets()(i,j)];
}
inline T& operator()(unsigned int i, unsigned int j) {
return fArray[Offsets()(i,j)];
}
inline T& operator[](unsigned int i) {
return fArray[Offsets().apply(i) ];
//return fArray[Offsets()(i/D, i%D)];
}
inline const T& operator[](unsigned int i) const {
return fArray[Offsets().apply(i) ];
//return fArray[Offsets()(i/D, i%D)];
}
inline T apply(unsigned int i) const {
return fArray[Offsets().apply(i) ];
//return operator()(i/D, i%D);
}
inline T* Array() { return fArray; }
inline const T* Array() const { return fArray; }
/**
assignment : only symmetric to symmetric allowed
*/
template <class R>
inline MatRepSym<T, D>& operator=(const R&) {
STATIC_CHECK(0==1,
Cannot_assign_general_to_symmetric_matrix_representation);
return *this;
}
inline MatRepSym<T, D>& operator=(const MatRepSym& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] = rhs.Array()[i];
return *this;
}
/**
self addition : only symmetric to symmetric allowed
*/
template <class R>
inline MatRepSym<T, D>& operator+=(const R&) {
STATIC_CHECK(0==1,
Cannot_add_general_to_symmetric_matrix_representation);
return *this;
}
inline MatRepSym<T, D>& operator+=(const MatRepSym& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] += rhs.Array()[i];
return *this;
}
/**
self subtraction : only symmetric to symmetric allowed
*/
template <class R>
inline MatRepSym<T, D>& operator-=(const R&) {
STATIC_CHECK(0==1,
Cannot_substract_general_to_symmetric_matrix_representation);
return *this;
}
inline MatRepSym<T, D>& operator-=(const MatRepSym& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] -= rhs.Array()[i];
return *this;
}
template <class R>
inline bool operator==(const R& rhs) const {
bool rc = true;
for(unsigned int i=0; i<D*D; ++i) {
rc = rc && (operator[](i) == rhs[i]);
}
return rc;
}
enum {
/// return no. of matrix rows
kRows = D,
/// return no. of matrix columns
kCols = D,
/// return no of elements: rows*columns
kSize = D*(D+1)/2
};
void CreateOffsets() {
const static RowOffsets<D> off;
fOff = &off;
}
inline const RowOffsets<D> & Offsets() const {
return *fOff;
}
private:
//T __attribute__ ((aligned (16))) fArray[kSize];
T fArray[kSize];
const RowOffsets<D> * fOff; //! transient
};
} // namespace Math
} // namespace ROOT
#endif // MATH_MATRIXREPRESENTATIONSSTATIC_H
|