This file is indexed.

/usr/include/root/Math/MatrixInversion.icc is in libroot-math-smatrix-dev 5.34.14-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
// @(#)root/smatrix:$Id$
// Authors: CLHEP authors, L. Moneta    2006  

#ifndef ROOT_Math_MatrixInversion_icc
#define ROOT_Math_MatrixInversion_icc


#include "Math/SVector.h"
#include <limits>


// inversion algorithms for matrices
// taken  from CLHEP (L. Moneta May 2006)

namespace ROOT { 

  namespace Math { 


  /** General Inversion for a symmetric matrix 
      Bunch-Kaufman diagonal pivoting method
      It is decribed in J.R. Bunch, L. Kaufman (1977). 
      "Some Stable Methods for Calculating Inertia and Solving Symmetric 
      Linear Systems", Math. Comp. 31, p. 162-179. or in Gene H. Golub, 
      /Charles F. van Loan, "Matrix Computations" (the second edition 
      has a bug.) and implemented in "lapack"
      Mario Stanke, 09/97
      
  */

template <unsigned int idim, unsigned int N>
template<class T> 
void Inverter<idim,N>::InvertBunchKaufman(MatRepSym<T,idim> & rhs, int &ifail) {




   int i, j, k, s;
   int pivrow;

   const int nrow = MatRepSym<T,idim>::kRows;

   // Establish the two working-space arrays needed:  x and piv are
   // used as pointers to arrays of doubles and ints respectively, each
   // of length nrow.  We do not want to reallocate each time through
   // unless the size needs to grow.  We do not want to leak memory, even
   // by having a new without a delete that is only done once.
  

   SVector<T, MatRepSym<T,idim>::kRows> xvec; 
   SVector<int, MatRepSym<T,idim>::kRows> pivv; 
  
   typedef int* pivIter; 
   typedef T* mIter; 


   // Note - resize shuld do  nothing if the size is already larger than nrow,
   //        but on VC++ there are indications that it does so we check.
   // Note - the data elements in a vector are guaranteed to be contiguous,
   //        so x[i] and piv[i] are optimally fast.
   mIter   x   = xvec.begin();
   // x[i] is used as helper storage, needs to have at least size nrow.
   pivIter piv = pivv.begin();
   // piv[i] is used to store details of exchanges
      
   double temp1, temp2;
   mIter ip, mjj, iq;
   double lambda, sigma;
   const double alpha = .6404; // = (1+sqrt(17))/8
   // LM (04/2009) remove this useless check (it is not in LAPACK) which fails inversion of 
   // a matrix with  values < epsilon in the diagonal
   //
   //const double epsilon = 32*std::numeric_limits<T>::epsilon();
   // whenever a sum of two doubles is below or equal to epsilon
   // it is set to zero.
   // this constant could be set to zero but then the algorithm
   // doesn't neccessarily detect that a matrix is singular
  
   for (i = 0; i < nrow; i++)
      piv[i] = i+1;
      
   ifail = 0;
      
   // compute the factorization P*A*P^T = L * D * L^T 
   // L is unit lower triangular, D is direct sum of 1x1 and 2x2 matrices
   // L and D^-1 are stored in A = *this, P is stored in piv[]
	
   for (j=1; j < nrow; j+=s)  // main loop over columns
   {
      mjj = rhs.Array() + j*(j-1)/2 + j-1;
      lambda = 0;           // compute lambda = max of A(j+1:n,j)
      pivrow = j+1;
      ip = rhs.Array() + (j+1)*j/2 + j-1;
      for (i=j+1; i <= nrow ; ip += i++)
         if (std::abs(*ip) > lambda)
         {
            lambda = std::abs(*ip);
            pivrow = i;
         }
	  
      if (lambda == 0 )
      {
         if (*mjj == 0)
         {
            ifail = 1;
            return;
         }
         s=1;
         *mjj = 1.0f / *mjj;
      }
      else
      {
         if (std::abs(*mjj) >= lambda*alpha)
         {
            s=1;
            pivrow=j;
         }
         else
         {
            sigma = 0;  // compute sigma = max A(pivrow, j:pivrow-1)
            ip = rhs.Array() + pivrow*(pivrow-1)/2+j-1;
            for (k=j; k < pivrow; k++)
            {
               if (std::abs(*ip) > sigma)
                  sigma = std::abs(*ip);
               ip++;
            }
            // sigma cannot be zero because it is at least lambda which is not zero
            if ( std::abs(*mjj) >= alpha * lambda * (lambda/ sigma) )
            {
               s=1;
               pivrow = j;
            }
            else if (std::abs(*(rhs.Array()+pivrow*(pivrow-1)/2+pivrow-1)) 
                     >= alpha * sigma)
               s=1;
            else
               s=2;
         }
         if (pivrow == j)  // no permutation neccessary
         {
            piv[j-1] = pivrow;
            if (*mjj == 0)
            {
               ifail=1;
               return;
            }
            temp2 = *mjj = 1.0f/ *mjj; // invert D(j,j)
		  
            // update A(j+1:n, j+1,n)
            for (i=j+1; i <= nrow; i++)
            {
               temp1 = *(rhs.Array() + i*(i-1)/2 + j-1) * temp2;
               ip = rhs.Array()+i*(i-1)/2+j;
               for (k=j+1; k<=i; k++)
               {
                  *ip -= static_cast<T> ( temp1 * *(rhs.Array() + k*(k-1)/2 + j-1) );
//                   if (std::abs(*ip) <= epsilon)
//                      *ip=0;
                  ip++;
               }
            }
            // update L 
            ip = rhs.Array() + (j+1)*j/2 + j-1; 
            for (i=j+1; i <= nrow; ip += i++)
               *ip *= static_cast<T> ( temp2 );
         }
         else if (s==1) // 1x1 pivot 
         {
            piv[j-1] = pivrow;
		  
            // interchange rows and columns j and pivrow in
            // submatrix (j:n,j:n)
            ip = rhs.Array() + pivrow*(pivrow-1)/2 + j;
            for (i=j+1; i < pivrow; i++, ip++)
            {
               temp1 = *(rhs.Array() + i*(i-1)/2 + j-1);
               *(rhs.Array() + i*(i-1)/2 + j-1)= *ip;
               *ip = static_cast<T> ( temp1 );
            }
            temp1 = *mjj;
            *mjj = *(rhs.Array()+pivrow*(pivrow-1)/2+pivrow-1);
            *(rhs.Array()+pivrow*(pivrow-1)/2+pivrow-1) = static_cast<T> (temp1 );
            ip = rhs.Array() + (pivrow+1)*pivrow/2 + j-1;
            iq = ip + pivrow-j;
            for (i = pivrow+1; i <= nrow; ip += i, iq += i++)
            {
               temp1 = *iq;
               *iq = *ip;
               *ip = static_cast<T>( temp1 );
            }
		  
            if (*mjj == 0)
            {
               ifail = 1;
               return;
            }
            temp2 = *mjj = 1.0f / *mjj; // invert D(j,j)
		  
            // update A(j+1:n, j+1:n)
            for (i = j+1; i <= nrow; i++)
            {
               temp1 = *(rhs.Array() + i*(i-1)/2 + j-1) * temp2;
               ip = rhs.Array()+i*(i-1)/2+j;
               for (k=j+1; k<=i; k++)
               {
                  *ip -= static_cast<T> (temp1 * *(rhs.Array() + k*(k-1)/2 + j-1) );
//                   if (std::abs(*ip) <= epsilon)
//                      *ip=0;
                  ip++;
               }
            }
            // update L
            ip = rhs.Array() + (j+1)*j/2 + j-1;
            for (i=j+1; i<=nrow; ip += i++)
               *ip *= static_cast<T>( temp2 );
         }
         else // s=2, ie use a 2x2 pivot
         {
            piv[j-1] = -pivrow;
            piv[j] = 0; // that means this is the second row of a 2x2 pivot
		  
            if (j+1 != pivrow) 
            {
               // interchange rows and columns j+1 and pivrow in
               // submatrix (j:n,j:n) 
               ip = rhs.Array() + pivrow*(pivrow-1)/2 + j+1;
               for (i=j+2; i < pivrow; i++, ip++)
               {
                  temp1 = *(rhs.Array() + i*(i-1)/2 + j);
                  *(rhs.Array() + i*(i-1)/2 + j) = *ip;
                  *ip = static_cast<T>( temp1 );
               }
               temp1 = *(mjj + j + 1);
               *(mjj + j + 1) = 
                  *(rhs.Array() + pivrow*(pivrow-1)/2 + pivrow-1);
               *(rhs.Array() + pivrow*(pivrow-1)/2 + pivrow-1) = static_cast<T>( temp1 );
               temp1 = *(mjj + j);
               *(mjj + j) = *(rhs.Array() + pivrow*(pivrow-1)/2 + j-1);
               *(rhs.Array() + pivrow*(pivrow-1)/2 + j-1) = static_cast<T>( temp1 );
               ip = rhs.Array() + (pivrow+1)*pivrow/2 + j;
               iq = ip + pivrow-(j+1);
               for (i = pivrow+1; i <= nrow; ip += i, iq += i++)
               {
                  temp1 = *iq;
                  *iq = *ip;
                  *ip = static_cast<T>( temp1 );
               }
            } 
            // invert D(j:j+1,j:j+1)
            temp2 = *mjj * *(mjj + j + 1) - *(mjj + j) * *(mjj + j); 
            if (temp2 == 0)
               std::cerr
                  << "SymMatrix::bunch_invert: error in pivot choice" 
                  << std::endl;
            temp2 = 1. / temp2;
            // this quotient is guaranteed to exist by the choice 
            // of the pivot
            temp1 = *mjj;
            *mjj = static_cast<T>( *(mjj + j + 1) * temp2 );
            *(mjj + j + 1) = static_cast<T>( temp1 * temp2 );
            *(mjj + j) = static_cast<T>( - *(mjj + j) * temp2 );
		  
            if (j < nrow-1) // otherwise do nothing
            {
               // update A(j+2:n, j+2:n)
               for (i=j+2; i <= nrow ; i++)
               {
                  ip = rhs.Array() + i*(i-1)/2 + j-1;
                  temp1 = *ip * *mjj + *(ip + 1) * *(mjj + j);
//                   if (std::abs(temp1 ) <= epsilon)
//                      temp1 = 0;
                  temp2 = *ip * *(mjj + j) + *(ip + 1) * *(mjj + j + 1);
//                   if (std::abs(temp2 ) <= epsilon)
//                      temp2 = 0;
                  for (k = j+2; k <= i ; k++)
                  {
                     ip = rhs.Array() + i*(i-1)/2 + k-1;
                     iq = rhs.Array() + k*(k-1)/2 + j-1;
                     *ip -= static_cast<T>( temp1 * *iq + temp2 * *(iq+1) );
//                      if (std::abs(*ip) <= epsilon)
//                         *ip = 0;
                  }
               }
               // update L
               for (i=j+2; i <= nrow ; i++)
               {
                  ip = rhs.Array() + i*(i-1)/2 + j-1;
                  temp1 = *ip * *mjj + *(ip+1) * *(mjj + j);
//                   if (std::abs(temp1) <= epsilon)
//                      temp1 = 0;
                  *(ip+1) = *ip * *(mjj + j) 
                     + *(ip+1) * *(mjj + j + 1);
//                   if (std::abs(*(ip+1)) <= epsilon)
//                      *(ip+1) = 0;
                  *ip = static_cast<T>( temp1 );
               }
            }
         }
      }
   } // end of main loop over columns

   if (j == nrow) // the the last pivot is 1x1
   {
      mjj = rhs.Array() + j*(j-1)/2 + j-1;
      if (*mjj == 0)
      {
         ifail = 1;
         return;
      }
      else
         *mjj = 1.0f  / *mjj;
   } // end of last pivot code

   // computing the inverse from the factorization
	 
   for (j = nrow ; j >= 1 ; j -= s) // loop over columns
   {
      mjj = rhs.Array() + j*(j-1)/2 + j-1;
      if (piv[j-1] > 0) // 1x1 pivot, compute column j of inverse
      {
         s = 1; 
         if (j < nrow)
         {
            ip = rhs.Array() + (j+1)*j/2 + j-1;
            for (i=0; i < nrow-j; ip += 1+j+i++)
               x[i] = *ip;
            for (i=j+1; i<=nrow ; i++)
            {
               temp2=0;
               ip = rhs.Array() + i*(i-1)/2 + j;
               for (k=0; k <= i-j-1; k++)
                  temp2 += *ip++ * x[k];
               for (ip += i-1; k < nrow-j; ip += 1+j+k++) 
                  temp2 += *ip * x[k];
               *(rhs.Array()+ i*(i-1)/2 + j-1) = static_cast<T>( -temp2 );
            }
            temp2 = 0;
            ip = rhs.Array() + (j+1)*j/2 + j-1;
            for (k=0; k < nrow-j; ip += 1+j+k++)
               temp2 += x[k] * *ip;
            *mjj -= static_cast<T>( temp2 );
         }
      }
      else //2x2 pivot, compute columns j and j-1 of the inverse
      {
         if (piv[j-1] != 0)
            std::cerr << "error in piv" << piv[j-1] << std::endl;
         s=2; 
         if (j < nrow)
         {
            ip = rhs.Array() + (j+1)*j/2 + j-1;
            for (i=0; i < nrow-j; ip += 1+j+i++)
               x[i] = *ip;
            for (i=j+1; i<=nrow ; i++)
            {
               temp2 = 0;
               ip = rhs.Array() + i*(i-1)/2 + j;
               for (k=0; k <= i-j-1; k++)
                  temp2 += *ip++ * x[k];
               for (ip += i-1; k < nrow-j; ip += 1+j+k++)
                  temp2 += *ip * x[k];
               *(rhs.Array()+ i*(i-1)/2 + j-1) = static_cast<T>( -temp2 );
            }    
            temp2 = 0;
            ip = rhs.Array() + (j+1)*j/2 + j-1;
            for (k=0; k < nrow-j; ip += 1+j+k++)
               temp2 += x[k] * *ip;
            *mjj -= static_cast<T>( temp2 );
            temp2 = 0;
            ip = rhs.Array() + (j+1)*j/2 + j-2;
            for (i=j+1; i <= nrow; ip += i++)
               temp2 += *ip * *(ip+1);
            *(mjj-1) -= static_cast<T>( temp2 );
            ip = rhs.Array() + (j+1)*j/2 + j-2;
            for (i=0; i < nrow-j; ip += 1+j+i++)
               x[i] = *ip;
            for (i=j+1; i <= nrow ; i++)
            {
               temp2 = 0;
               ip = rhs.Array() + i*(i-1)/2 + j;
               for (k=0; k <= i-j-1; k++)
                  temp2 += *ip++ * x[k];
               for (ip += i-1; k < nrow-j; ip += 1+j+k++)
                  temp2 += *ip * x[k];
               *(rhs.Array()+ i*(i-1)/2 + j-2)= static_cast<T>( -temp2 );
            }
            temp2 = 0;
            ip = rhs.Array() + (j+1)*j/2 + j-2;
            for (k=0; k < nrow-j; ip += 1+j+k++)
               temp2 += x[k] * *ip;
            *(mjj-j) -= static_cast<T>( temp2 );
         }
      }  
	  
      // interchange rows and columns j and piv[j-1] 
      // or rows and columns j and -piv[j-2]
	  
      pivrow = (piv[j-1]==0)? -piv[j-2] : piv[j-1];
      ip = rhs.Array() + pivrow*(pivrow-1)/2 + j;
      for (i=j+1;i < pivrow; i++, ip++)
      {
         temp1 = *(rhs.Array() + i*(i-1)/2 + j-1);
         *(rhs.Array() + i*(i-1)/2 + j-1) = *ip;
         *ip = static_cast<T>( temp1 );
      }
      temp1 = *mjj;
      *mjj = *(rhs.Array() + pivrow*(pivrow-1)/2 + pivrow-1);
      *(rhs.Array() + pivrow*(pivrow-1)/2 + pivrow-1) = static_cast<T>( temp1 );
      if (s==2)
      {
         temp1 = *(mjj-1);
         *(mjj-1) = *( rhs.Array() + pivrow*(pivrow-1)/2 + j-2);
         *( rhs.Array() + pivrow*(pivrow-1)/2 + j-2) = static_cast<T>( temp1 );
      }
	  
      ip = rhs.Array() + (pivrow+1)*pivrow/2 + j-1;  // &A(i,j)
      iq = ip + pivrow-j;
      for (i = pivrow+1; i <= nrow; ip += i, iq += i++)
      {
         temp1 = *iq;
         *iq = *ip;
         *ip = static_cast<T>(temp1);
      } 
   } // end of loop over columns (in computing inverse from factorization)

   return; // inversion successful

}



/**
   LU factorization : code originally from CERNLIB dfact routine and ported in C++ for CLHEP
*/

template <unsigned int idim, unsigned int n>
template<class T> 
int Inverter<idim,n>::DfactMatrix(MatRepStd<T,idim,n> & rhs, T &det, unsigned int *ir) {
  
   if (idim != n) return   -1; 

   int ifail, jfail;

   typedef T* mIter; 


   double tf;
   double g1 = 1.0e-19, g2 = 1.0e19;

   double p, q, t;
   double s11, s12;

   // LM (04.09) : remove useless check on epsilon and set it to zero
   const double epsilon = 0.0;
   //double epsilon = 8*std::numeric_limits<T>::epsilon();
   // could be set to zero (like it was before)
   // but then the algorithm often doesn't detect
   // that a matrix is singular

   int normal = 0, imposs = -1;
   int jrange = 0, jover = 1, junder = -1;
   ifail = normal;
   jfail = jrange;
   int nxch = 0;
   det = 1.0;
   mIter mj = rhs.Array();
   mIter mjj = mj;
   for (unsigned int j=1;j<=n;j++) {
      unsigned int k = j;
      p = (std::abs(*mjj));
      if (j!=n) {
         mIter mij = mj + n + j - 1; 
         for (unsigned int i=j+1;i<=n;i++) {
            q = (std::abs(*(mij)));
            if (q > p) {
               k = i;
               p = q;
            }
            mij += n;
         }
         if (k==j) {
            if (p <= epsilon) {
               det = 0;
               ifail = imposs;
               jfail = jrange;
               return ifail;
            }
            det = -det; // in this case the sign of the determinant
            // must not change. So I change it twice. 
         }
         mIter mjl = mj;
         mIter mkl = rhs.Array() + (k-1)*n;
         for (unsigned int l=1;l<=n;l++) {
            tf = *mjl;
            *(mjl++) = *mkl;
            *(mkl++) = static_cast<T>(tf);
         }
         nxch = nxch + 1;  // this makes the determinant change its sign
         ir[nxch] = (((j)<<12)+(k));
      } else {
         if (p <= epsilon) {
            det = 0.0;
            ifail = imposs;
            jfail = jrange;
            return ifail;
         }
      }
      det *= *mjj;
      *mjj = 1.0f / *mjj;
      t = (std::abs(det));
      if (t < g1) {
         det = 0.0;
         if (jfail == jrange) jfail = junder;
      } else if (t > g2) {
         det = 1.0;
         if (jfail==jrange) jfail = jover;
      }
      if (j!=n) {
         mIter mk = mj + n;
         mIter mkjp = mk + j;
         mIter mjk = mj + j;
         for (k=j+1;k<=n;k++) {
            s11 = - (*mjk);
            s12 = - (*mkjp);
            if (j!=1) {
               mIter mik = rhs.Array() + k - 1;
               mIter mijp = rhs.Array() + j;
               mIter mki = mk;
               mIter mji = mj;
               for (unsigned int i=1;i<j;i++) {
                  s11 += (*mik) * (*(mji++));
                  s12 += (*mijp) * (*(mki++));
                  mik += n;
                  mijp += n;
               }
            }
            // cast to avoid warnings from double to float conversions
            *(mjk++) = static_cast<T>( - s11 * (*mjj) );
            *(mkjp) = static_cast<T> ( -(((*(mjj+1)))*((*(mkjp-1)))+(s12)) );
            mk += n;
            mkjp += n;
         }
      }
      mj += n;
      mjj += (n+1);
   }
   if (nxch%2==1) det = -det;
   if (jfail !=jrange) det = 0.0;
   ir[n] = nxch;
   return 0;
}



    /** 
	Inversion for General square matrices. 
	Code from  dfinv routine from CERNLIB
	Assumed first the LU decomposition via DfactMatrix function
	
	taken from CLHEP : L. Moneta May 2006
    */

template <unsigned int idim, unsigned int n>
template<class T> 
int Inverter<idim,n>::DfinvMatrix(MatRepStd<T,idim,n> & rhs,unsigned int * ir) {


   typedef T* mIter; 

   if (idim != n) return   -1; 


   double s31, s32;
   register double s33, s34;

   mIter m11 = rhs.Array();
   mIter m12 = m11 + 1;
   mIter m21 = m11 + n;
   mIter m22 = m12 + n;
   *m21 = -(*m22) * (*m11) * (*m21);
   *m12 = -(*m12);
   if (n>2) {
      mIter mi = rhs.Array() + 2 * n;
      mIter mii= rhs.Array() + 2 * n + 2;
      mIter mimim = rhs.Array() + n + 1;
      for (unsigned int i=3;i<=n;i++) {
         unsigned int im2 = i - 2;
         mIter mj = rhs.Array();
         mIter mji = mj + i - 1;
         mIter mij = mi;
         for (unsigned int j=1;j<=im2;j++) { 
            s31 = 0.0;
            s32 = *mji;
            mIter mkj = mj + j - 1;
            mIter mik = mi + j - 1;
            mIter mjkp = mj + j;
            mIter mkpi = mj + n + i - 1;
            for (unsigned int k=j;k<=im2;k++) {
               s31 += (*mkj) * (*(mik++));
               s32 += (*(mjkp++)) * (*mkpi);
               mkj += n;
               mkpi += n;
            }
            *mij = static_cast<T>( -(*mii) * (((*(mij-n)))*( (*(mii-1)))+(s31)) );
            *mji = static_cast<T> ( -s32 );
            mj += n;
            mji += n;
            mij++;
         }
         *(mii-1) = -(*mii) * (*mimim) * (*(mii-1));
         *(mimim+1) = -(*(mimim+1));
         mi += n;
         mimim += (n+1);
         mii += (n+1);
      }
   }
   mIter mi = rhs.Array();
   mIter mii = rhs.Array();
   for (unsigned  int i=1;i<n;i++) {
      unsigned int ni = n - i;
      mIter mij = mi;
      //int j;
      for (unsigned j=1; j<=i;j++) {
         s33 = *mij;
         register mIter mikj = mi + n + j - 1;
         register mIter miik = mii + 1;
         mIter min_end = mi + n;
         for (;miik<min_end;) {
            s33 += (*mikj) * (*(miik++));
            mikj += n;
         }
         *(mij++) = static_cast<T> ( s33 );
      }
      for (unsigned j=1;j<=ni;j++) {
         s34 = 0.0;
         mIter miik = mii + j;
         mIter mikij = mii + j * n + j;
         for (unsigned int k=j;k<=ni;k++) {
            s34 += *mikij * (*(miik++));
            mikij += n;
         }
         *(mii+j) = s34;
      }
      mi += n;
      mii += (n+1);
   }
   unsigned int nxch = ir[n];
   if (nxch==0) return 0;
   for (unsigned int mm=1;mm<=nxch;mm++) {
      unsigned int k = nxch - mm + 1;
      int ij = ir[k];
      int i = ij >> 12;
      int j = ij%4096;
      mIter mki = rhs.Array() + i - 1;
      mIter mkj = rhs.Array() + j - 1;
      for (k=1; k<=n;k++) {
         // 2/24/05 David Sachs fix of improper swap bug that was present
         // for many years:
         T ti = *mki; // 2/24/05
         *mki = *mkj;
         *mkj = ti;	// 2/24/05
         mki += n;
         mkj += n;
      }
   }
   return 0;
}


  }  // end namespace Math
}    // end namespace ROOT

#endif