This file is indexed.

/usr/include/root/Math/Dinv.h is in libroot-math-smatrix-dev 5.34.14-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// @(#)root/smatrix:$Id$
// Authors: T. Glebe, L. Moneta    2005  

#ifndef  ROOT_Math_Dinv
#define  ROOT_Math_Dinv
// ********************************************************************
//
// source:
//
// type:      source code
//
// created:   03. Apr 2001
//
// author:    Thorsten Glebe
//            HERA-B Collaboration
//            Max-Planck-Institut fuer Kernphysik
//            Saupfercheckweg 1
//            69117 Heidelberg
//            Germany
//            E-mail: T.Glebe@mpi-hd.mpg.de
//
// Description: square Matrix inversion
//              Code was taken from CERNLIB::kernlib dfinv function, translated
//              from FORTRAN to C++ and optimized.
//              n:    Order of the square matrix
//              idim: First dimension of array A
//
// changes:
// 03 Apr 2001 (TG) creation
//
// ********************************************************************
#ifdef OLD_IMPL
#include "Math/Dfactir.h"
#include "Math/Dfinv.h"
#include "Math/Dsinv.h"
#endif

#ifndef ROOT_Math_CholeskyDecomp
#include "Math/CholeskyDecomp.h"
#endif

// #ifndef ROOT_Math_QRDecomposition
// #include "Math/QRDecomposition.h"
// #endif


 
namespace ROOT { 

  namespace Math { 



/** 
    Matrix Inverter class 
    Class to specialize calls to Dinv. Dinv computes the inverse of a square
    matrix if dimension idim and order n. The content of the matrix will be
    replaced by its inverse. In case the inversion fails, the matrix content is
    destroyed. Invert specializes Dinv by the matrix order. E.g. if the order
    of the matrix is two, the routine Inverter<2> is called which implements
    Cramers rule.

    @author T. Glebe
*/
//==============================================================================
// Inverter class
//==============================================================================
template <unsigned int idim, unsigned int n = idim>
class Inverter {
public:
  /// matrix inversion for a generic square matrix using LU factorization 
  /// (code originally from CERNLIB and then ported in C++ for CLHEP)  
  /// implementation is in file Math/MatrixInversion.icc 
  template <class MatrixRep>
  static bool Dinv(MatrixRep& rhs) {


      /* Initialized data */
     unsigned int work[n+1] = {0};

     static typename MatrixRep::value_type det(0);
      
      if (DfactMatrix(rhs,det,work) != 0) {
	std::cerr << "Dfact_matrix failed!!" << std::endl;
	return false;
      }

      int ifail =  DfinvMatrix(rhs,work); 
      if (ifail == 0) return true; 
      return false; 
  } // Dinv


  ///  symmetric matrix inversion using 
  ///   Bunch-kaufman pivoting method
  ///   implementation in Math/MatrixInversion.icc 
  template <class T>
  static bool Dinv(MatRepSym<T,idim> & rhs) {
    int ifail = 0; 
    InvertBunchKaufman(rhs,ifail); 
    if (ifail == 0) return true; 
    return false; 
  }


  /**
     LU Factorization method for inversion of general square matrices
     (see implementation in Math/MatrixInversion.icc)
   */
  template <class T>
  static int DfactMatrix(MatRepStd<T,idim,n> & rhs, T & det, unsigned int * work); 
  /**
     LU inversion of general square matrices. To be called after DFactMatrix
     (see implementation in Math/MatrixInversion.icc)
   */
  template <class T>
  static int DfinvMatrix(MatRepStd<T,idim,n> & rhs, unsigned int * work); 

  /**
     Bunch-Kaufman method for inversion of symmetric matrices
   */
  template <class T>
  static void InvertBunchKaufman(MatRepSym<T,idim> & rhs, int &ifail); 



}; // class Inverter

// fast inverter class using Cramer inversion 
// by default use other default inversion
/** 
    Fast Matrix Inverter class 
    Class to specialize calls to Dinv. Dinv computes the inverse of a square
    matrix if dimension idim and order n. The content of the matrix will be
    replaced by its inverse. In case the inversion fails, the matrix content is
    destroyed. Invert specializes Dinv by the matrix order. E.g. if the order
    of the matrix is less than 5 , the class implements
    Cramers rule. 
    Be careful that for matrix with high condition the accuracy of the Cramer rule is much poorer

    @author L. Moneta
*/
template <unsigned int idim, unsigned int n = idim>
class FastInverter {
public:
  ///
  template <class MatrixRep>
  static bool Dinv(MatrixRep& rhs) {
     return Inverter<idim,n>::Dinv(rhs); 
  }
  template <class T>
  static bool Dinv(MatRepSym<T,idim> & rhs) {
     return Inverter<idim,n>::Dinv(rhs); 
  }
};


/** Inverter<0>.
    In case of zero order, do nothing.

    @author T. Glebe
*/
//==============================================================================
// Inverter<0>
//==============================================================================
template <>
class Inverter<0> {
public:
  ///
  template <class MatrixRep>
  inline static bool Dinv(MatrixRep&) { return true; }
};
    

/** 
    1x1 matrix inversion \f$a_{11} \to 1/a_{11}\f$

    @author T. Glebe
*/
//==============================================================================
// Inverter<1>
//==============================================================================
template <>
class Inverter<1> {
public:
  ///
  template <class MatrixRep>
  static bool Dinv(MatrixRep& rhs) {
    
    if (rhs[0] == 0.) {
      return false;
    }
    rhs[0] = 1. / rhs[0];
    return true;
  }
};


/** 
    2x2 matrix inversion  using Cramers rule.

    @author T. Glebe
*/
//==============================================================================
// Inverter<2>: Cramers rule
//==============================================================================

template <>
class Inverter<2> {
public:
  ///
  template <class MatrixRep>
  static bool Dinv(MatrixRep& rhs) {

    typedef typename MatrixRep::value_type T; 
    T det = rhs[0] * rhs[3] - rhs[2] * rhs[1];
    
    if (det == T(0.) ) { return false; }

    T s = T(1.0) / det; 

    T c11 = s * rhs[3];


    rhs[2] = -s * rhs[2];
    rhs[1] = -s * rhs[1];
    rhs[3] =  s * rhs[0];
    rhs[0] = c11;


    return true;
  }

  // specialization for the symmetric matrices
  template <class T>
  static bool Dinv(MatRepSym<T,2> & rep) {
    
    T * rhs = rep.Array(); 

    T det = rhs[0] * rhs[2] - rhs[1] * rhs[1];

    
    if (det == T(0.)) { return false; }

    T s = T(1.0) / det;
    T c11 = s * rhs[2];

    rhs[1] = -s * rhs[1];
    rhs[2] =  s * rhs[0];
    rhs[0] = c11;
    return true;
  }

};


/** 
    3x3 direct matrix inversion  using Cramer Rule
    use only for FastInverter
*/
//==============================================================================
// FastInverter<3>
//==============================================================================

template <>
class FastInverter<3> {
public:
  ///
  // use Cramer Rule
  template <class MatrixRep>
  static bool Dinv(MatrixRep& rhs); 

  template <class T>
  static bool Dinv(MatRepSym<T,3> & rhs);

};

/** 
    4x4 matrix inversion using Cramers rule.
*/
template <>
class FastInverter<4> {
public:
  ///
  template <class MatrixRep>
  static bool Dinv(MatrixRep& rhs); 

  template <class T>
  static bool Dinv(MatRepSym<T,4> & rhs);

};

/** 
    5x5 Matrix inversion using Cramers rule.
*/
template <>
class FastInverter<5> {
public:
  ///
  template <class MatrixRep>
  static bool Dinv(MatrixRep& rhs); 

  template <class T>
  static bool Dinv(MatRepSym<T,5> & rhs);

};

// inverter for Cholesky
// works only for symmetric matrices and will produce a 
// compilation error otherwise 

template <unsigned int idim>
class CholInverter {
public:
  ///
  template <class MatrixRep>
  static bool Dinv(MatrixRep&) {
     STATIC_CHECK( false, Error_cholesky_SMatrix_type_is_not_symmetric );
     return false;
  }
  template <class T>
  inline static bool Dinv(MatRepSym<T,idim> & rhs) {
     CholeskyDecomp<T, idim> decomp(rhs); 
     return decomp.Invert(rhs); 
  }
};


  }  // namespace Math

}  // namespace ROOT
          
#ifndef ROOT_Math_CramerInversion_icc
#include "CramerInversion.icc"
#endif
#ifndef ROOT_Math_CramerInversionSym_icc
#include "CramerInversionSym.icc"
#endif
#ifndef ROOT_Math_MatrixInversion_icc
#include "MatrixInversion.icc"
#endif

#endif  /* ROOT_Math_Dinv */