/usr/include/root/TRotation.h is in libroot-math-physics-dev 5.34.14-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | // @(#)root/physics:$Id$
// Author: Peter Malzacher 19/06/99
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#ifndef ROOT_TRotation
#define ROOT_TRotation
#include "TObject.h"
#ifndef ROOT_TVector3
#include "TVector3.h"
#endif
class TQuaternion;
class TRotation : public TObject {
public:
class TRotationRow {
public:
inline TRotationRow(const TRotation &, int);
inline TRotationRow(const TRotationRow &);
inline TRotationRow & operator=(const TRotationRow &);
inline Double_t operator [] (int) const;
private:
const TRotation * fRR;
// const TRotation & fRR;
int fII;
};
// Helper class for implemention of C-style subscripting r[i][j]
TRotation();
// Default constructor. Gives a unit matrix.
TRotation(const TRotation &);
TRotation(const TQuaternion &);
// Copy constructor.
virtual ~TRotation() {;};
inline Double_t XX() const;
inline Double_t XY() const;
inline Double_t XZ() const;
inline Double_t YX() const;
inline Double_t YY() const;
inline Double_t YZ() const;
inline Double_t ZX() const;
inline Double_t ZY() const;
inline Double_t ZZ() const;
// Elements of the rotation matrix (Geant4).
inline TRotationRow operator [] (int) const;
// Returns object of the helper class for C-style subscripting r[i][j]
Double_t operator () (int, int) const;
// Fortran-style subscripting: returns (i,j) element of the rotation matrix.
inline TRotation & operator = (const TRotation &);
// Assignment.
inline Bool_t operator == (const TRotation &) const;
inline Bool_t operator != (const TRotation &) const;
// Comparisons (Geant4).
inline Bool_t IsIdentity() const;
// Returns true if the identity matrix (Geant4).
inline TVector3 operator * (const TVector3 &) const;
// Multiplication with a TVector3.
TRotation operator * (const TRotation &) const;
inline TRotation & operator *= (const TRotation &);
inline TRotation & Transform(const TRotation &);
// Matrix multiplication.
// Note a *= b; <=> a = a * b; while a.transform(b); <=> a = b * a;
inline TRotation Inverse() const;
// Returns the inverse.
inline TRotation & Invert();
// Inverts the Rotation matrix.
TRotation & RotateX(Double_t);
// Rotation around the x-axis.
TRotation & RotateY(Double_t);
// Rotation around the y-axis.
TRotation & RotateZ(Double_t);
// Rotation around the z-axis.
TRotation & Rotate(Double_t, const TVector3 &);
inline TRotation & Rotate(Double_t, const TVector3 *);
// Rotation around a specified vector.
TRotation & RotateAxes(const TVector3 & newX,
const TVector3 & newY,
const TVector3 & newZ);
// Rotation of local axes (Geant4).
Double_t PhiX() const;
Double_t PhiY() const;
Double_t PhiZ() const;
Double_t ThetaX() const;
Double_t ThetaY() const;
Double_t ThetaZ() const;
// Return angles (RADS) made by rotated axes against original axes (Geant4).
void AngleAxis(Double_t &, TVector3 &) const;
// Returns the rotation angle and rotation axis (Geant4).
inline TRotation & SetToIdentity();
// Set equal to the identity rotation.
TRotation & SetXEulerAngles(Double_t phi, Double_t theta, Double_t psi);
void SetXPhi(Double_t);
void SetXTheta(Double_t);
void SetXPsi(Double_t);
// Set the euler angles of the rotation. The angles are defined using the
// y-convention which rotates around the Z axis, around the new X axis, and
// then around the new Z axis. The x-convention is used Goldstein, Landau
// and Lifshitz, and other common physics texts. Contrast this with
// SetYEulerAngles.
TRotation & RotateXEulerAngles(Double_t phi, Double_t theta, Double_t psi);
// Adds a rotation of the local axes defined by the Euler angle to the
// current rotation. See SetXEulerAngles for a note about conventions.
Double_t GetXPhi(void) const;
Double_t GetXTheta(void) const;
Double_t GetXPsi(void) const;
// Return the euler angles of the rotation. See SetYEulerAngles for a
// note about conventions.
TRotation & SetYEulerAngles(Double_t phi, Double_t theta, Double_t psi);
void SetYPhi(Double_t);
void SetYTheta(Double_t);
void SetYPsi(Double_t);
// Set the euler angles of the rotation. The angles are defined using the
// y-convention which rotates around the Z axis, around the new Y axis, and
// then around the new Z axis. The x-convention is used Goldstein, Landau
// and Lifshitz, and other common physics texts and is a rotation around the
// Z axis, around the new X axis, and then around the new Z axis.
TRotation & RotateYEulerAngles(Double_t phi, Double_t theta, Double_t psi);
// Adds a rotation of the local axes defined by the Euler angle to the
// current rotation. See SetYEulerAngles for a note about conventions.
Double_t GetYPhi(void) const;
Double_t GetYTheta(void) const;
Double_t GetYPsi(void) const;
// Return the euler angles of the rotation. See SetYEulerAngles for a
// note about conventions.
TRotation & SetXAxis(const TVector3& axis);
TRotation & SetXAxis(const TVector3& axis, const TVector3& xyPlane);
TRotation & SetYAxis(const TVector3& axis);
TRotation & SetYAxis(const TVector3& axis, const TVector3& yzPlane);
TRotation & SetZAxis(const TVector3& axis);
TRotation & SetZAxis(const TVector3& axis, const TVector3& zxPlane);
// Create a rotation with the axis vector parallel to the rotated coordinate
// system. If a second vector is provided it defines a plane passing
// through the axis.
void MakeBasis(TVector3& xAxis, TVector3& yAxis, TVector3& zAxis) const;
// Take two input vectors (in xAxis, and zAxis) and turn them into an
// orthogonal basis. This is an internal helper function used to implement
// the Set?Axis functions, but is exposed because the functionality is
// often useful.
protected:
TRotation(Double_t, Double_t, Double_t, Double_t, Double_t,
Double_t, Double_t, Double_t, Double_t);
// Protected constructor.
Double_t fxx, fxy, fxz, fyx, fyy, fyz, fzx, fzy, fzz;
// The matrix elements.
ClassDef(TRotation,1) // Rotations of TVector3 objects
};
inline Double_t TRotation::XX() const { return fxx; }
inline Double_t TRotation::XY() const { return fxy; }
inline Double_t TRotation::XZ() const { return fxz; }
inline Double_t TRotation::YX() const { return fyx; }
inline Double_t TRotation::YY() const { return fyy; }
inline Double_t TRotation::YZ() const { return fyz; }
inline Double_t TRotation::ZX() const { return fzx; }
inline Double_t TRotation::ZY() const { return fzy; }
inline Double_t TRotation::ZZ() const { return fzz; }
inline TRotation::TRotationRow::TRotationRow
(const TRotation & r, int i) : fRR(&r), fII(i) {}
inline TRotation::TRotationRow::TRotationRow
(const TRotationRow & rr) : fRR(rr.fRR), fII(rr.fII) {}
inline TRotation::TRotationRow & TRotation::TRotationRow::operator = (const TRotation::TRotationRow & rr) {
fRR = rr.fRR;
fII = rr.fII;
return *this;
}
inline Double_t TRotation::TRotationRow::operator [] (int jj) const {
return fRR->operator()(fII,jj);
}
inline TRotation::TRotationRow TRotation::operator [] (int i) const {
return TRotationRow(*this, i);
}
inline TRotation & TRotation::operator = (const TRotation & m) {
fxx = m.fxx;
fxy = m.fxy;
fxz = m.fxz;
fyx = m.fyx;
fyy = m.fyy;
fyz = m.fyz;
fzx = m.fzx;
fzy = m.fzy;
fzz = m.fzz;
return *this;
}
inline Bool_t TRotation::operator == (const TRotation& m) const {
return (fxx == m.fxx && fxy == m.fxy && fxz == m.fxz &&
fyx == m.fyx && fyy == m.fyy && fyz == m.fyz &&
fzx == m.fzx && fzy == m.fzy && fzz == m.fzz) ? kTRUE : kFALSE;
}
inline Bool_t TRotation::operator != (const TRotation &m) const {
return (fxx != m.fxx || fxy != m.fxy || fxz != m.fxz ||
fyx != m.fyx || fyy != m.fyy || fyz != m.fyz ||
fzx != m.fzx || fzy != m.fzy || fzz != m.fzz) ? kTRUE : kFALSE;
}
inline Bool_t TRotation::IsIdentity() const {
return (fxx == 1.0 && fxy == 0.0 && fxz == 0.0 &&
fyx == 0.0 && fyy == 1.0 && fyz == 0.0 &&
fzx == 0.0 && fzy == 0.0 && fzz == 1.0) ? kTRUE : kFALSE;
}
inline TRotation & TRotation::SetToIdentity() {
fxx = fyy = fzz = 1.0;
fxy = fxz = fyx = fyz = fzx = fzy = 0.0;
return *this;
}
inline TVector3 TRotation::operator * (const TVector3 & p) const {
return TVector3(fxx*p.X() + fxy*p.Y() + fxz*p.Z(),
fyx*p.X() + fyy*p.Y() + fyz*p.Z(),
fzx*p.X() + fzy*p.Y() + fzz*p.Z());
}
inline TRotation & TRotation::operator *= (const TRotation & m) {
return *this = operator * (m);
}
inline TRotation & TRotation::Transform(const TRotation & m) {
return *this = m.operator * (*this);
}
inline TRotation TRotation::Inverse() const {
return TRotation(fxx, fyx, fzx, fxy, fyy, fzy, fxz, fyz, fzz);
}
inline TRotation & TRotation::Invert() {
return *this=Inverse();
}
inline TRotation & TRotation::Rotate(Double_t psi, const TVector3 * p) {
return Rotate(psi, *p);
}
#endif
|