This file is indexed.

/usr/include/root/TRotation.h is in libroot-math-physics-dev 5.34.14-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// @(#)root/physics:$Id$
// Author: Peter Malzacher   19/06/99

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/
#ifndef ROOT_TRotation
#define ROOT_TRotation

#include "TObject.h"

#ifndef ROOT_TVector3
#include "TVector3.h"
#endif

class TQuaternion;

class TRotation : public TObject {
    
public:
    
class TRotationRow {
public:
   inline TRotationRow(const TRotation &, int);
   inline TRotationRow(const TRotationRow &);
   inline TRotationRow & operator=(const TRotationRow &);
   inline Double_t operator [] (int) const;
private:
   const TRotation * fRR;
   //    const TRotation & fRR;
   int fII;
};
   // Helper class for implemention of C-style subscripting r[i][j]

   TRotation();
   // Default constructor. Gives a unit matrix.

   TRotation(const TRotation &);
   TRotation(const TQuaternion &);
   // Copy constructor.

   virtual ~TRotation() {;};

   inline Double_t XX() const;
   inline Double_t XY() const;
   inline Double_t XZ() const;
   inline Double_t YX() const;
   inline Double_t YY() const;
   inline Double_t YZ() const;
   inline Double_t ZX() const;
   inline Double_t ZY() const;
   inline Double_t ZZ() const;
   // Elements of the rotation matrix (Geant4).

   inline TRotationRow operator [] (int) const;
   // Returns object of the helper class for C-style subscripting r[i][j]

   Double_t operator () (int, int) const;
   // Fortran-style subscripting: returns (i,j) element of the rotation matrix.

   inline TRotation & operator = (const TRotation &);
   // Assignment.

   inline Bool_t operator == (const TRotation &) const;
   inline Bool_t operator != (const TRotation &) const;
   // Comparisons (Geant4).

   inline Bool_t IsIdentity() const;
   // Returns true if the identity matrix (Geant4).

   inline TVector3 operator * (const TVector3 &) const;
   // Multiplication with a TVector3.

   TRotation operator * (const TRotation &) const;
   inline TRotation & operator *= (const TRotation &);
   inline TRotation & Transform(const TRotation &);
   // Matrix multiplication.
   // Note a *= b; <=> a = a * b; while a.transform(b); <=> a = b * a;

   inline TRotation Inverse() const;
   // Returns the inverse.

   inline TRotation & Invert();
   // Inverts the Rotation matrix.

   TRotation & RotateX(Double_t);
   // Rotation around the x-axis.

   TRotation & RotateY(Double_t);
   // Rotation around the y-axis.

   TRotation & RotateZ(Double_t);
   // Rotation around the z-axis.
 
   TRotation & Rotate(Double_t, const TVector3 &);
   inline TRotation & Rotate(Double_t, const TVector3 *);
   // Rotation around a specified vector.

   TRotation & RotateAxes(const TVector3 & newX,
                          const TVector3 & newY,
                          const TVector3 & newZ);
   // Rotation of local axes (Geant4).

   Double_t PhiX() const;
   Double_t PhiY() const;
   Double_t PhiZ() const;
   Double_t ThetaX() const;
   Double_t ThetaY() const;
   Double_t ThetaZ() const;
   // Return angles (RADS) made by rotated axes against original axes (Geant4).

   void AngleAxis(Double_t &, TVector3 &) const;
   // Returns the rotation angle and rotation axis (Geant4).

   inline TRotation & SetToIdentity();
   // Set equal to the identity rotation.
 
   TRotation & SetXEulerAngles(Double_t phi, Double_t theta, Double_t psi);
   void SetXPhi(Double_t);
   void SetXTheta(Double_t);
   void SetXPsi(Double_t);
   // Set the euler angles of the rotation.  The angles are defined using the
   // y-convention which rotates around the Z axis, around the new X axis, and
   // then around the new Z axis.  The x-convention is used Goldstein, Landau
   // and Lifshitz, and other common physics texts.  Contrast this with
   // SetYEulerAngles.

   TRotation & RotateXEulerAngles(Double_t phi, Double_t theta, Double_t psi);
   // Adds a rotation of the local axes defined by the Euler angle to the
   // current rotation.  See SetXEulerAngles for a note about conventions.

   Double_t GetXPhi(void) const;
   Double_t GetXTheta(void) const;
   Double_t GetXPsi(void) const;
   // Return the euler angles of the rotation.  See SetYEulerAngles for a
   // note about conventions.

   TRotation & SetYEulerAngles(Double_t phi, Double_t theta, Double_t psi);
   void SetYPhi(Double_t);
   void SetYTheta(Double_t);
   void SetYPsi(Double_t);
   // Set the euler angles of the rotation.  The angles are defined using the
   // y-convention which rotates around the Z axis, around the new Y axis, and
   // then around the new Z axis.  The x-convention is used Goldstein, Landau
   // and Lifshitz, and other common physics texts and is a rotation around the
   // Z axis, around the new X axis, and then around the new Z axis.

   TRotation & RotateYEulerAngles(Double_t phi, Double_t theta, Double_t psi);
   // Adds a rotation of the local axes defined by the Euler angle to the
   // current rotation.  See SetYEulerAngles for a note about conventions.

   Double_t GetYPhi(void) const;
   Double_t GetYTheta(void) const;
   Double_t GetYPsi(void) const;
   // Return the euler angles of the rotation.  See SetYEulerAngles for a
   // note about conventions.

   TRotation & SetXAxis(const TVector3& axis);
   TRotation & SetXAxis(const TVector3& axis, const TVector3& xyPlane);
   TRotation & SetYAxis(const TVector3& axis);
   TRotation & SetYAxis(const TVector3& axis, const TVector3& yzPlane);
   TRotation & SetZAxis(const TVector3& axis);
   TRotation & SetZAxis(const TVector3& axis, const TVector3& zxPlane);
   // Create a rotation with the axis vector parallel to the rotated coordinate
   // system.  If a second vector is provided it defines a plane passing
   // through the axis.

   void MakeBasis(TVector3& xAxis, TVector3& yAxis, TVector3& zAxis) const;
   // Take two input vectors (in xAxis, and zAxis) and turn them into an
   // orthogonal basis.  This is an internal helper function used to implement
   // the Set?Axis functions, but is exposed because the functionality is 
   // often useful.

protected:

   TRotation(Double_t, Double_t, Double_t, Double_t, Double_t,
             Double_t, Double_t, Double_t, Double_t);
   // Protected constructor.

   Double_t fxx, fxy, fxz, fyx, fyy, fyz, fzx, fzy, fzz;
   // The matrix elements.

   ClassDef(TRotation,1) // Rotations of TVector3 objects

};


inline Double_t TRotation::XX() const { return fxx; }
inline Double_t TRotation::XY() const { return fxy; }
inline Double_t TRotation::XZ() const { return fxz; }
inline Double_t TRotation::YX() const { return fyx; }
inline Double_t TRotation::YY() const { return fyy; }
inline Double_t TRotation::YZ() const { return fyz; }
inline Double_t TRotation::ZX() const { return fzx; }
inline Double_t TRotation::ZY() const { return fzy; }
inline Double_t TRotation::ZZ() const { return fzz; }

inline TRotation::TRotationRow::TRotationRow
(const TRotation & r, int i) : fRR(&r), fII(i) {}

inline TRotation::TRotationRow::TRotationRow
(const TRotationRow & rr) : fRR(rr.fRR), fII(rr.fII) {}

inline TRotation::TRotationRow & TRotation::TRotationRow::operator = (const TRotation::TRotationRow & rr) {
   fRR = rr.fRR;
   fII = rr.fII;
   return *this;
}

inline Double_t TRotation::TRotationRow::operator [] (int jj) const {
   return fRR->operator()(fII,jj);
}

inline TRotation::TRotationRow TRotation::operator [] (int i) const {
   return TRotationRow(*this, i);
}

inline TRotation & TRotation::operator = (const TRotation & m) {
   fxx = m.fxx;
   fxy = m.fxy;
   fxz = m.fxz;
   fyx = m.fyx;
   fyy = m.fyy;
   fyz = m.fyz;
   fzx = m.fzx;
   fzy = m.fzy;
   fzz = m.fzz;
   return *this;
}

inline Bool_t TRotation::operator == (const TRotation& m) const {
   return (fxx == m.fxx && fxy == m.fxy && fxz == m.fxz &&
           fyx == m.fyx && fyy == m.fyy && fyz == m.fyz &&
           fzx == m.fzx && fzy == m.fzy && fzz == m.fzz) ? kTRUE : kFALSE;
}

inline Bool_t TRotation::operator != (const TRotation &m) const {
   return (fxx != m.fxx || fxy != m.fxy || fxz != m.fxz ||
           fyx != m.fyx || fyy != m.fyy || fyz != m.fyz ||
           fzx != m.fzx || fzy != m.fzy || fzz != m.fzz) ? kTRUE : kFALSE;
}

inline Bool_t TRotation::IsIdentity() const {
   return  (fxx == 1.0 && fxy == 0.0 && fxz == 0.0 &&
            fyx == 0.0 && fyy == 1.0 && fyz == 0.0 &&
            fzx == 0.0 && fzy == 0.0 && fzz == 1.0) ? kTRUE : kFALSE;
}

inline TRotation & TRotation::SetToIdentity() {
   fxx = fyy = fzz = 1.0;
   fxy = fxz = fyx = fyz = fzx = fzy = 0.0;
   return *this;
}

inline TVector3 TRotation::operator * (const TVector3 & p) const {
   return TVector3(fxx*p.X() + fxy*p.Y() + fxz*p.Z(),
                   fyx*p.X() + fyy*p.Y() + fyz*p.Z(),
                   fzx*p.X() + fzy*p.Y() + fzz*p.Z());
}

inline TRotation & TRotation::operator *= (const TRotation & m) {
   return *this = operator * (m);
}

inline TRotation & TRotation::Transform(const TRotation & m) {
   return *this = m.operator * (*this);
}

inline TRotation TRotation::Inverse() const {
   return TRotation(fxx, fyx, fzx, fxy, fyy, fzy, fxz, fyz, fzz);
}

inline TRotation & TRotation::Invert() {
   return *this=Inverse();
}

inline TRotation & TRotation::Rotate(Double_t psi, const TVector3 * p) {
   return Rotate(psi, *p);
}



#endif