This file is indexed.

/usr/include/root/TLinearFitter.h is in libroot-math-minuit-dev 5.34.14-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// @(#)root/minuit:$Id$
// Author: Anna Kreshuk 04/03/2005

/*************************************************************************
 * Copyright (C) 1995-2005, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

#ifndef ROOT_TLinearFitter
#define ROOT_TLinearFitter

//////////////////////////////////////////////////////////////////////////
//
// The Linear Fitter - fitting functions that are LINEAR IN PARAMETERS
//
// Linear fitter is used to fit a set of data points with a linear
// combination of specified functions. Note, that "linear" in the name
// stands only for the model dependency on parameters, the specified
// functions can be nonlinear.
// The general form of this kind of model is
//
//          y(x) = a[0] + a[1]*f[1](x)+...a[n]*f[n](x)
//
// Functions f are fixed functions of x. For example, fitting with a
// polynomial is linear fitting in this sense.
//
//                         The fitting method
//
// The fit is performed using the Normal Equations method with Cholesky
// decomposition.
//
//                         Why should it be used?
//
// The linear fitter is considerably faster than general non-linear
// fitters and doesn't require to set the initial values of parameters.
//
//                          Using the fitter:
//
// 1.Adding the data points:
//  1.1 To store or not to store the input data?
//      - There are 2 options in the constructor - to store or not
//        store the input data. The advantages of storing the data
//        are that you'll be able to reset the fitting model without
//        adding all the points again, and that for very large sets
//        of points the chisquare is calculated more precisely.
//        The obvious disadvantage is the amount of memory used to
//        keep all the points.
//      - Before you start adding the points, you can change the
//        store/not store option by StoreData() method.
//  1.2 The data can be added:
//      - simply point by point - AddPoint() method
//      - an array of points at once:
//        If the data is already stored in some arrays, this data
//        can be assigned to the linear fitter without physically
//        coping bytes, thanks to the Use() method of
//        TVector and TMatrix classes - AssignData() method
//
// 2.Setting the formula
//  2.1 The linear formula syntax:
//      -Additive parts are separated by 2 plus signes "++"
//       --for example "1 ++ x" - for fitting a straight line
//      -All standard functions, undrestood by TFormula, can be used
//       as additive parts
//       --TMath functions can be used too
//      -Functions, used as additive parts, shouldn't have any parameters,
//       even if those parameters are set.
//       --for example, if normalizing a sum of a gaus(0, 1) and a
//         gaus(0, 2), don't use the built-in "gaus" of TFormula,
//         because it has parameters, take TMath::Gaus(x, 0, 1) instead.
//      -Polynomials can be used like "pol3", .."polN"
//      -If fitting a more than 3-dimensional formula, variables should
//       be numbered as follows:
//       -- x0, x1, x2... For example, to fit  "1 ++ x0 ++ x1 ++ x2 ++ x3*x3"
//  2.2 Setting the formula:
//    2.2.1 If fitting a 1-2-3-dimensional formula, one can create a
//          TF123 based on a linear expression and pass this function
//          to the fitter:
//          --Example:
//            TLinearFitter *lf = new TLinearFitter();
//            TF2 *f2 = new TF2("f2", "x ++ y ++ x*x*y*y", -2, 2, -2, 2);
//            lf->SetFormula(f2);
//          --The results of the fit are then stored in the function,
//            just like when the TH1::Fit or TGraph::Fit is used
//          --A linear function of this kind is by no means different
//            from any other function, it can be drawn, evaluated, etc.
//    2.2.2 There is no need to create the function if you don't want to,
//          the formula can be set by expression:
//          --Example:
//            // 2 is the number of dimensions
//            TLinearFitter *lf = new TLinearFitter(2);
//            lf->SetFormula("x ++ y ++ x*x*y*y");
//          --That's the only way to go, if you want to fit in more
//            than 3 dimensions
//    2.2.3 The fastest functions to compute are polynomials and hyperplanes.
//          --Polynomials are set the usual way: "pol1", "pol2",...
//          --Hyperplanes are set by expression "hyp3", "hyp4", ...
//          ---The "hypN" expressions only work when the linear fitter
//             is used directly, not through TH1::Fit or TGraph::Fit.
//             To fit a graph or a histogram with a hyperplane, define
//             the function as "1++x++y".
//          ---A constant term is assumed for a hyperplane, when using
//             the "hypN" expression, so "hyp3" is in fact fitting with
//             "1++x++y++z" function.
//          --Fitting hyperplanes is much faster than fitting other
//            expressions so if performance is vital, calculate the
//            function values beforehand and give them to the fitter
//            as variables
//          --Example:
//            You want to fit "sin(x)|cos(2*x)" very fast. Calculate
//            sin(x) and cos(2*x) beforehand and store them in array *data.
//            Then:
//            TLinearFitter *lf=new TLinearFitter(2, "hyp2");
//            lf->AssignData(npoint, 2, data, y);
//
//  2.3 Resetting the formula
//    2.3.1 If the input data is stored (or added via AssignData() function),
//          the fitting formula can be reset without re-adding all the points.
//          --Example:
//            TLinearFitter *lf=new TLinearFitter("1++x++x*x");
//            lf->AssignData(n, 1, x, y, e);
//            lf->Eval()
//            //looking at the parameter significance, you see,
//            // that maybe the fit will improve, if you take out
//            // the constant term
//            lf->SetFormula("x++x*x");
//            lf->Eval();
//            ...
//    2.3.2 If the input data is not stored, the fitter will have to be
//          cleared and the data will have to be added again to try a
//          different formula.
//
// 3.Accessing the fit results
//  3.1 There are methods in the fitter to access all relevant information:
//      --GetParameters, GetCovarianceMatrix, etc
//      --the t-values of parameters and their significance can be reached by
//        GetParTValue() and GetParSignificance() methods
//  3.2 If fitting with a pre-defined TF123, the fit results are also
//      written into this function.
//
//////////////////////////////////////////////////////////////////////////

#ifndef ROOT_TVectorD
#include "TVectorD.h"
#endif
#ifndef ROOT_TMatrixD
#include "TMatrixD.h"
#endif
#ifndef ROOT_TFormula
#include "TFormula.h"
#endif
#ifndef ROOT_TVirtualFitter
#include "TVirtualFitter.h"
#endif


class TLinearFitter: public TVirtualFitter {

private:
   TVectorD     fParams;         //vector of parameters
   TMatrixDSym  fParCovar;       //matrix of parameters' covariances
   TVectorD     fTValues;        //T-Values of parameters
   TVectorD     fParSign;        //significance levels of parameters
   TMatrixDSym  fDesign;         //matrix AtA
   TMatrixDSym  fDesignTemp;     //! temporary matrix, used for num.stability
   TMatrixDSym  fDesignTemp2;    //!
   TMatrixDSym  fDesignTemp3;    //!

   TVectorD     fAtb;            //vector Atb
   TVectorD     fAtbTemp;        //! temporary vector, used for num.stability
   TVectorD     fAtbTemp2;       //!
   TVectorD     fAtbTemp3;       //!

   TObjArray    fFunctions;      //array of basis functions
   TVectorD     fY;              //the values being fit
   Double_t     fY2;             //sum of square of y, used for chisquare
   Double_t     fY2Temp;         //! temporary variable used for num.stability
   TMatrixD     fX;              //values of x
   TVectorD     fE;              //the errors if they are known
   TFormula     *fInputFunction; //the function being fit
   Double_t     fVal[1000];      //! temporary

   Int_t        fNpoints;        //number of points
   Int_t        fNfunctions;     //number of basis functions
   Int_t        fFormulaSize;    //length of the formula
   Int_t        fNdim;           //number of dimensions in the formula
   Int_t        fNfixed;         //number of fixed parameters
   Int_t        fSpecial;        //=100+n if fitting a polynomial of deg.n
                                 //=200+n if fitting an n-dimensional hyperplane
   char         *fFormula;       //the formula
   Bool_t       fIsSet;          //Has the formula been set?
   Bool_t       fStoreData;      //Is the data stored?
   Double_t     fChisquare;      //Chisquare of the fit

   Int_t        fH;              //number of good points in robust fit
   Bool_t       fRobust;         //true when performing a robust fit
   TBits        fFitsample;      //indices of points, used in the robust fit

   Bool_t       *fFixedParams;   //[fNfixed] array of fixed/released params

   void  AddToDesign(Double_t *x, Double_t y, Double_t e);
   void  ComputeTValues();
   Int_t GraphLinearFitter(Double_t h);
   Int_t Graph2DLinearFitter(Double_t h);
   Int_t HistLinearFitter();
   Int_t MultiGraphLinearFitter(Double_t h);

   //robust fitting functions:
   Int_t     Partition(Int_t nmini, Int_t *indsubdat);
   void      RDraw(Int_t *subdat, Int_t *indsubdat);
   void      CreateSubset(Int_t ntotal, Int_t h, Int_t *index);
   Double_t  CStep(Int_t step, Int_t h, Double_t *residuals, Int_t *index, Int_t *subdat, Int_t start, Int_t end);
   Bool_t    Linf();

public:
   TLinearFitter();
   TLinearFitter(Int_t ndim, const char *formula, Option_t *opt="D");
   TLinearFitter(Int_t ndim);
   TLinearFitter(TFormula *function, Option_t *opt="D");
   TLinearFitter(const TLinearFitter& tlf);
   virtual ~TLinearFitter();

   TLinearFitter& operator=(const TLinearFitter& tlf);
   virtual void       Add(TLinearFitter *tlf);
   virtual void       AddPoint(Double_t *x, Double_t y, Double_t e=1);
   virtual void       AddTempMatrices();
   virtual void       AssignData(Int_t npoints, Int_t xncols, Double_t *x, Double_t *y, Double_t *e=0);

   virtual void       Clear(Option_t *option="");
   virtual void       ClearPoints();
   virtual void       Chisquare();
   virtual Int_t      Eval();
   virtual Int_t      EvalRobust(Double_t h=-1);
   virtual Int_t      ExecuteCommand(const char *command, Double_t *args, Int_t nargs);
   virtual void       FixParameter(Int_t ipar);
   virtual void       FixParameter(Int_t ipar, Double_t parvalue);
   virtual void       GetAtbVector(TVectorD &v);
   virtual Double_t   GetChisquare();
   virtual void       GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl=0.95);
   virtual void       GetConfidenceIntervals(TObject *obj, Double_t cl=0.95);
   virtual Double_t*  GetCovarianceMatrix() const;
   virtual void       GetCovarianceMatrix(TMatrixD &matr);
   virtual Double_t   GetCovarianceMatrixElement(Int_t i, Int_t j) const {return fParCovar(i, j);}
   virtual void       GetDesignMatrix(TMatrixD &matr); 
   virtual void       GetErrors(TVectorD &vpar);
   virtual Int_t      GetNumberTotalParameters() const {return fNfunctions;}
   virtual Int_t      GetNumberFreeParameters() const {return fNfunctions-fNfixed;}
   virtual Int_t      GetNpoints() { return fNpoints; }
   virtual void       GetParameters(TVectorD &vpar);
   virtual Double_t   GetParameter(Int_t ipar) const {return fParams(ipar);}
   virtual Int_t      GetParameter(Int_t ipar,char* name,Double_t& value,Double_t& /*verr*/,Double_t& /*vlow*/, Double_t& /*vhigh*/) const;
   virtual const char *GetParName(Int_t ipar) const;
   virtual Double_t   GetParError(Int_t ipar) const;
   virtual Double_t   GetParTValue(Int_t ipar);
   virtual Double_t   GetParSignificance(Int_t ipar);
   virtual void       GetFitSample(TBits& bits);
   virtual Double_t   GetY2() const {return fY2;}
   virtual Bool_t     IsFixed(Int_t ipar) const {return fFixedParams[ipar];}
   virtual Int_t      Merge(TCollection *list);
   virtual void       PrintResults(Int_t level, Double_t amin=0) const;
   virtual void       ReleaseParameter(Int_t ipar);
   virtual void       SetBasisFunctions(TObjArray * functions); 
   virtual void       SetDim(Int_t n);
   virtual void       SetFormula(const char* formula);
   virtual void       SetFormula(TFormula *function);
   virtual void       StoreData(Bool_t store) {fStoreData=store;}

   virtual Bool_t     UpdateMatrix();

   //dummy functions for TVirtualFitter:
   virtual Double_t  Chisquare(Int_t /*npar*/, Double_t * /*params*/) const {return 0;}
   virtual Int_t     GetErrors(Int_t /*ipar*/,Double_t & /*eplus*/, Double_t & /*eminus*/, Double_t & /*eparab*/, Double_t & /*globcc*/) const {return 0;}

   virtual Int_t     GetStats(Double_t& /*amin*/, Double_t& /*edm*/, Double_t& /*errdef*/, Int_t& /*nvpar*/, Int_t& /*nparx*/) const {return 0;}
   virtual Double_t  GetSumLog(Int_t /*i*/) {return 0;}
   virtual void      SetFitMethod(const char * /*name*/) {;}
   virtual Int_t     SetParameter(Int_t /*ipar*/,const char * /*parname*/,Double_t /*value*/,Double_t /*verr*/,Double_t /*vlow*/, Double_t /*vhigh*/) {return 0;}

   ClassDef(TLinearFitter, 2) //fit a set of data points with a linear combination of functions
};

#endif