/usr/include/root/Math/VavilovFast.h is in libroot-math-mathmore-dev 5.34.14-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | // @(#)root/mathmore:$Id$
// Authors: B. List 29.4.2010
/**********************************************************************
* *
* Copyright (c) 2004 ROOT Foundation, CERN/PH-SFT *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License *
* as published by the Free Software Foundation; either version 2 *
* of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this library (see file COPYING); if not, write *
* to the Free Software Foundation, Inc., 59 Temple Place, Suite *
* 330, Boston, MA 02111-1307 USA, or contact the author. *
* *
**********************************************************************/
// Header file for class VavilovFast
//
// Created by: blist at Thu Apr 29 11:19:00 2010
//
// Last update: Thu Apr 29 11:19:00 2010
//
#ifndef ROOT_Math_VavilovFast
#define ROOT_Math_VavilovFast
/**
@ingroup StatFunc
*/
#include "Math/Vavilov.h"
namespace ROOT {
namespace Math {
//____________________________________________________________________________
/**
Class describing a Vavilov distribution.
The probability density function of the Vavilov distribution
as function of Landau's parameter is given by:
\f[ p(\lambda_L; \kappa, \beta^2) =
\frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} \phi(s) e^{\lambda_L s} ds\f]
where \f$\phi(s) = e^{C} e^{\psi(s)}\f$
with \f$ C = \kappa (1+\beta^2 \gamma )\f$
and \f$\psi(s)= s \ln \kappa + (s+\beta^2 \kappa)
\cdot \left ( \int \limits_{0}^{1}
\frac{1 - e^{\frac{-st}{\kappa}}}{t} \,d t- \gamma \right )
- \kappa \, e^{\frac{-s}{\kappa}}\f$.
\f$ \gamma = 0.5772156649\dots\f$ is Euler's constant.
For the class VavilovFast,
Pdf returns the Vavilov distribution as function of Landau's parameter
\f$\lambda_L = \lambda_V/\kappa - \ln \kappa\f$,
which is the convention used in the CERNLIB routines, and in the tables
by S.M. Seltzer and M.J. Berger: Energy loss stragglin of protons and mesons:
Tabulation of the Vavilov distribution, pp 187-203
in: National Research Council (U.S.), Committee on Nuclear Science:
Studies in penetration of charged particles in matter,
Nat. Akad. Sci. Publication 1133,
Nucl. Sci. Series Report No. 39,
Washington (Nat. Akad. Sci.) 1964, 388 pp.
Available from
<A HREF="http://books.google.de/books?id=kmMrAAAAYAAJ&lpg=PP9&pg=PA187#v=onepage&q&f=false">Google books</A>
Therefore, for small values of \f$\kappa < 0.01\f$,
pdf approaches the Landau distribution.
For values \f$\kappa > 10\f$, the Gauss approximation should be used
with \f$\mu\f$ and \f$\sigma\f$ given by Vavilov::mean(kappa, beta2)
and sqrt(Vavilov::variance(kappa, beta2).
For values \f$\kappa > 10\f$, the Gauss approximation should be used
with \f$\mu\f$ and \f$\sigma\f$ given by Vavilov::mean(kappa, beta2)
and sqrt(Vavilov::variance(kappa, beta2).
The original Vavilov pdf is obtained by
v.Pdf(lambdaV/kappa-log(kappa))/kappa.
For detailed description see
A. Rotondi and P. Montagna, Fast calculation of Vavilov distribution,
<A HREF="http://dx.doi.org/10.1016/0168-583X(90)90749-K">Nucl. Instr. and Meth. B47 (1990) 215-224</A>,
which has been implemented in
<A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g115/top.html">
CERNLIB (G115)</A>.
The class stores coefficients needed to calculate \f$p(\lambda; \kappa, \beta^2)\f$
for fixed values of \f$\kappa\f$ and \f$\beta^2\f$.
Changing these values is computationally expensive.
The parameter \f$\kappa\f$ must be in the range \f$0.01 \le \kappa \le 12\f$.
The parameter \f$\beta^2\f$ must be in the range \f$0 \le \beta^2 \le 1\f$.
Average times on a Pentium Core2 Duo P8400 2.26GHz:
- 9.9us per call to SetKappaBeta2 or constructor
- 0.095us per call to Pdf, Cdf
- 3.7us per first call to Quantile after SetKappaBeta2 or constructor
- 0.137us per subsequent call to Quantile
Benno List, June 2010
@ingroup StatFunc
*/
class VavilovFast: public Vavilov {
public:
/**
Initialize an object to calculate the Vavilov distribution
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
*/
VavilovFast(double kappa=1, double beta2=1);
/**
Destructor
*/
virtual ~VavilovFast();
public:
/**
Evaluate the Vavilov probability density function
@param x The Landau parameter \f$x = \lambda_L\f$
*/
double Pdf (double x) const;
/**
Evaluate the Vavilov probability density function,
and set kappa and beta2, if necessary
@param x The Landau parameter \f$x = \lambda_L\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
*/
double Pdf (double x, double kappa, double beta2);
/**
Evaluate the Vavilov cummulative probability density function
@param x The Landau parameter \f$x = \lambda_L\f$
*/
double Cdf (double x) const;
/**
Evaluate the Vavilov cummulative probability density function,
and set kappa and beta2, if necessary
@param x The Landau parameter \f$x = \lambda_L\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
*/
double Cdf (double x, double kappa, double beta2);
/**
Evaluate the Vavilov complementary cummulative probability density function
@param x The Landau parameter \f$x = \lambda_L\f$
*/
double Cdf_c (double x) const;
/**
Evaluate the Vavilov complementary cummulative probability density function,
and set kappa and beta2, if necessary
@param x The Landau parameter \f$x = \lambda_L\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
*/
double Cdf_c (double x, double kappa, double beta2);
/**
Evaluate the inverse of the Vavilov cummulative probability density function
@param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
*/
double Quantile (double z) const;
/**
Evaluate the inverse of the Vavilov cummulative probability density function,
and set kappa and beta2, if necessary
@param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
*/
double Quantile (double z, double kappa, double beta2);
/**
Evaluate the inverse of the complementary Vavilov cummulative probability density function
@param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
*/
double Quantile_c (double z) const;
/**
Evaluate the inverse of the complementary Vavilov cummulative probability density function,
and set kappa and beta2, if necessary
@param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
*/
double Quantile_c (double z, double kappa, double beta2);
/**
Change \f$\kappa\f$ and \f$\beta^2\f$ and recalculate coefficients if necessary
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
*/
virtual void SetKappaBeta2 (double kappa, double beta2);
/**
Return the minimum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$
is nonzero in the current approximation
*/
virtual double GetLambdaMin() const;
/**
Return the maximum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$
is nonzero in the current approximation
*/
virtual double GetLambdaMax() const;
/**
Return the current value of \f$\kappa\f$
*/
virtual double GetKappa() const;
/**
Return the current value of \f$\beta^2\f$
*/
virtual double GetBeta2() const;
/**
Returns a static instance of class VavilovFast
*/
static VavilovFast *GetInstance();
/**
Returns a static instance of class VavilovFast,
and sets the values of kappa and beta2
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
*/
static VavilovFast *GetInstance(double kappa, double beta2);
private:
double fKappa;
double fBeta2;
double fAC[14];
double fHC[9];
double fWCM[201];
int fItype;
int fNpt;
static VavilovFast *fgInstance;
};
/**
The Vavilov probability density function
@param x The Landau parameter \f$x = \lambda_L\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
@ingroup PdfFunc
*/
double vavilov_fast_pdf (double x, double kappa, double beta2);
/**
The Vavilov cummulative probability density function
@param x The Landau parameter \f$x = \lambda_L\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
@ingroup ProbFunc
*/
double vavilov_fast_cdf (double x, double kappa, double beta2);
/**
The Vavilov complementary cummulative probability density function
@param x The Landau parameter \f$x = \lambda_L\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
@ingroup ProbFunc
*/
double vavilov_fast_cdf_c (double x, double kappa, double beta2);
/**
The inverse of the Vavilov cummulative probability density function
@param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
@ingroup QuantFunc
*/
double vavilov_fast_quantile (double z, double kappa, double beta2);
/**
The inverse of the complementary Vavilov cummulative probability density function
@param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
@param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$
@param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$
@ingroup QuantFunc
*/
double vavilov_fast_quantile_c (double z, double kappa, double beta2);
} // namespace Math
} // namespace ROOT
#endif /* ROOT_Math_VavilovFast */
|