This file is indexed.

/usr/include/root/Math/VavilovFast.h is in libroot-math-mathmore-dev 5.34.14-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// @(#)root/mathmore:$Id$
// Authors: B. List 29.4.2010

 /**********************************************************************
  *                                                                    *
  * Copyright (c) 2004 ROOT Foundation,  CERN/PH-SFT                   *
  *                                                                    *
  * This library is free software; you can redistribute it and/or      *
  * modify it under the terms of the GNU General Public License        *
  * as published by the Free Software Foundation; either version 2     *
  * of the License, or (at your option) any later version.             *
  *                                                                    *
  * This library is distributed in the hope that it will be useful,    *
  * but WITHOUT ANY WARRANTY; without even the implied warranty of     *
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU   *
  * General Public License for more details.                           *
  *                                                                    *
  * You should have received a copy of the GNU General Public License  *
  * along with this library (see file COPYING); if not, write          *
  * to the Free Software Foundation, Inc., 59 Temple Place, Suite      *
  * 330, Boston, MA 02111-1307 USA, or contact the author.             *
  *                                                                    *
  **********************************************************************/

// Header file for class VavilovFast
// 
// Created by: blist  at Thu Apr 29 11:19:00 2010
// 
// Last update: Thu Apr 29 11:19:00 2010
// 
#ifndef ROOT_Math_VavilovFast
#define ROOT_Math_VavilovFast


/**
   @ingroup StatFunc
 */


#include "Math/Vavilov.h"

namespace ROOT {
namespace Math {

//____________________________________________________________________________
/**
   Class describing a Vavilov distribution.
   
   The probability density function of the Vavilov distribution
   as function of Landau's parameter is given by:
  \f[ p(\lambda_L; \kappa, \beta^2) =  
  \frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} \phi(s) e^{\lambda_L s} ds\f]
   where \f$\phi(s) = e^{C} e^{\psi(s)}\f$
   with  \f$ C = \kappa (1+\beta^2 \gamma )\f$
   and \f$\psi(s)= s \ln \kappa + (s+\beta^2 \kappa)
               \cdot \left ( \int \limits_{0}^{1}
               \frac{1 - e^{\frac{-st}{\kappa}}}{t} \,d t- \gamma \right )
               - \kappa \, e^{\frac{-s}{\kappa}}\f$.
   \f$ \gamma = 0.5772156649\dots\f$ is Euler's constant.
   
   For the class VavilovFast, 
   Pdf returns the Vavilov distribution as function of Landau's parameter
   \f$\lambda_L = \lambda_V/\kappa  - \ln \kappa\f$,
   which is the convention used in the CERNLIB routines, and in the tables
   by S.M. Seltzer and M.J. Berger: Energy loss stragglin of protons and mesons:
   Tabulation of the Vavilov distribution, pp 187-203
   in: National Research Council (U.S.), Committee on Nuclear Science:
   Studies in penetration of charged particles in matter,
   Nat. Akad. Sci. Publication 1133,
   Nucl. Sci. Series Report No. 39,
   Washington (Nat. Akad. Sci.) 1964, 388 pp.
   Available from
   <A HREF="http://books.google.de/books?id=kmMrAAAAYAAJ&lpg=PP9&pg=PA187#v=onepage&q&f=false">Google books</A>

   Therefore, for small values of \f$\kappa < 0.01\f$,
   pdf approaches the Landau distribution.  

   For values \f$\kappa > 10\f$, the Gauss approximation should be used
   with \f$\mu\f$ and \f$\sigma\f$ given by Vavilov::mean(kappa, beta2)
   and sqrt(Vavilov::variance(kappa, beta2).
   
   For values \f$\kappa > 10\f$, the Gauss approximation should be used
   with \f$\mu\f$ and \f$\sigma\f$ given by Vavilov::mean(kappa, beta2)
   and sqrt(Vavilov::variance(kappa, beta2).
   
   The original Vavilov pdf is obtained by
   v.Pdf(lambdaV/kappa-log(kappa))/kappa.
       
   For detailed description see
   A. Rotondi and P. Montagna, Fast calculation of Vavilov distribution, 
   <A HREF="http://dx.doi.org/10.1016/0168-583X(90)90749-K">Nucl. Instr. and Meth. B47 (1990) 215-224</A>,
   which has been implemented in 
   <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g115/top.html">
   CERNLIB (G115)</A>.
   
   The class stores coefficients needed to calculate \f$p(\lambda; \kappa, \beta^2)\f$
   for fixed values of \f$\kappa\f$ and \f$\beta^2\f$.
   Changing these values is computationally expensive.
   
   The parameter \f$\kappa\f$ must be in the range \f$0.01 \le \kappa \le 12\f$.
   
   The parameter \f$\beta^2\f$ must be in the range \f$0 \le \beta^2 \le 1\f$.
   
   Average times on a Pentium Core2 Duo P8400 2.26GHz:
   - 9.9us per call to SetKappaBeta2 or constructor
   - 0.095us per call to Pdf, Cdf
   - 3.7us per first call to Quantile after SetKappaBeta2 or constructor
   - 0.137us per subsequent call to Quantile
   
   Benno List, June 2010
   
   @ingroup StatFunc
 */


class VavilovFast: public Vavilov {

public: 


   /**
      Initialize an object to calculate the Vavilov distribution

       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */

  VavilovFast(double kappa=1, double beta2=1); 


   /**
     Destructor
   */
   virtual ~VavilovFast(); 
   

public: 
  
   /** 
       Evaluate the Vavilov probability density function
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
   */
   double Pdf (double x) const;
  
   /** 
       Evaluate the Vavilov probability density function,
       and set kappa and beta2, if necessary
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   double Pdf (double x, double kappa, double beta2);
  
   /** 
       Evaluate the Vavilov cummulative probability density function
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
   */
   double Cdf (double x) const;
  
   /** 
       Evaluate the Vavilov cummulative probability density function,
       and set kappa and beta2, if necessary
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   double Cdf (double x, double kappa, double beta2);
   
   /** 
       Evaluate the Vavilov complementary cummulative probability density function
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
   */
   double Cdf_c (double x) const;
   
   /** 
       Evaluate the Vavilov complementary cummulative probability density function,
       and set kappa and beta2, if necessary
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   double Cdf_c (double x, double kappa, double beta2);
  
   /** 
       Evaluate the inverse of the Vavilov cummulative probability density function
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
   */
   double Quantile (double z) const;
  
   /** 
       Evaluate the inverse of the Vavilov cummulative probability density function,
       and set kappa and beta2, if necessary
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   double Quantile (double z, double kappa, double beta2);
  
   /** 
       Evaluate the inverse of the complementary Vavilov cummulative probability density function
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
   */
   double Quantile_c (double z) const;
  
   /** 
       Evaluate the inverse of the complementary Vavilov cummulative probability density function,
       and set kappa and beta2, if necessary
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   double Quantile_c (double z, double kappa, double beta2);

   /**
      Change \f$\kappa\f$ and \f$\beta^2\f$ and recalculate coefficients if necessary

       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   virtual void SetKappaBeta2 (double kappa, double beta2); 

   /**
      Return the minimum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$
      is nonzero in the current approximation
   */
   virtual double GetLambdaMin() const;

   /**
      Return the maximum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$
      is nonzero in the current approximation
   */
   virtual double GetLambdaMax() const;

   /**
      Return the current value of \f$\kappa\f$
   */
   virtual double GetKappa()     const;

   /**
      Return the current value of \f$\beta^2\f$
   */
   virtual double GetBeta2()     const;
      
   /**
      Returns a static instance of class VavilovFast
   */
   static VavilovFast *GetInstance();
   
   /**
      Returns a static instance of class VavilovFast,
      and sets the values of kappa and beta2
       
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   static VavilovFast *GetInstance(double kappa, double beta2);
   

private: 
   double fKappa;
   double fBeta2;

   double fAC[14];
   double fHC[9];
   double fWCM[201];
   int    fItype;
   int    fNpt;
      
   static VavilovFast *fgInstance;
     
}; 

   /** 
       The Vavilov probability density function
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
       
       @ingroup PdfFunc
   */
double vavilov_fast_pdf (double x, double kappa, double beta2);

   /** 
       The Vavilov cummulative probability density function
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 

       @ingroup ProbFunc
   */
double vavilov_fast_cdf (double x, double kappa, double beta2);

   /** 
       The Vavilov complementary cummulative probability density function
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 

       @ingroup ProbFunc
   */
double vavilov_fast_cdf_c (double x, double kappa, double beta2);

   /** 
       The inverse of the Vavilov cummulative probability density function
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
       
      @ingroup QuantFunc
   */
double vavilov_fast_quantile (double z, double kappa, double beta2);

   /** 
       The inverse of the complementary Vavilov cummulative probability density function
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
       @param kappa The parameter \f$\kappa\f$, which must be in the range \f$0.01 \le \kappa \le 12 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
 
      @ingroup QuantFunc
   */
double vavilov_fast_quantile_c (double z, double kappa, double beta2);

} // namespace Math
} // namespace ROOT

#endif /* ROOT_Math_VavilovFast */