/usr/include/Rivet/Projections/JetShape.hh is in librivet-dev 1.8.3-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | // -*- C++ -*-
#ifndef RIVET_JetShape_HH
#define RIVET_JetShape_HH
#include "Rivet/Rivet.hh"
#include "Rivet/Projection.hh"
#include "Rivet/Projections/JetAlg.hh"
#include "Rivet/Particle.hh"
#include "Rivet/Event.hh"
#include "Rivet/Tools/Utils.hh"
namespace Rivet {
/**
@brief Calculate the jet shape.
Calculate the differential and integral jet shapes in \f$P_{\perp}\f$ for a given
set of jets. This particular jet shape projection calculates jet shapes relative
to jet centroids, using only the particles associated to each jet, for the hardest
\f$ n \f$ jets.
The rapidity scheme (\f$ \eta \f$ or \f$ y \f$) has to be specified when
invoking the constructor.
The differential jet shape around a given jet axis at distance interval
\f$ r \pm \delta{r}/2 \f$ is defined as
\f[
\rho(r) =
\frac{1}{\delta r} \frac{1}{N_\mathrm{jets}}
\sum_\mathrm{jets} \frac{P_\perp(r - \delta r/2, r+\delta r/2)}{p_\perp(0, R)}
\f]
with \f$ 0 \le r \le R \f$ and \f$ P_\perp(r_1, r_2) = \sum_{\in [r_1, r_2)} p_\perp \f$.
The integral jet shape around a given jet axes until distance \f$ r \f$ is defined as
\f[
\Psi(r) =
\frac{1}{N_\mathrm{jets}}
\sum_\mathrm{jets} \frac{P_\perp(0, r)}{p_\perp(0, R)}
\f]
with \f$ 0 \le r \le R \f$ and \f$ P_\perp(r_1, r_2) = \sum_{\in [r_1, r_2)} p_\perp \f$.
The constructor expects also the binning in radius \f$ r \f$ to be supplied.
*/
class JetShape : public Projection {
public:
/// @name Constructors etc.
//@{
/// Constructor from histo range and number of bins.
JetShape(const JetAlg& jetalg,
double rmin, double rmax, size_t nbins,
double ptmin=0, double ptmax=MAXDOUBLE,
double absrapmin=-MAXDOUBLE, double absrapmax=-MAXDOUBLE,
RapScheme rapscheme=RAPIDITY);
/// Constructor from vector of bin edges.
JetShape(const JetAlg& jetalg, vector<double> binedges,
double ptmin=0, double ptmax=MAXDOUBLE,
double absrapmin=-MAXDOUBLE, double absrapmax=-MAXDOUBLE,
RapScheme rapscheme=RAPIDITY);
/// Clone on the heap.
virtual const Projection* clone() const {
return new JetShape(*this);
}
//@}
/// Reset projection between events.
void clear();
/// Do the calculation directly on a supplied collection of Jet objects.
void calc(const Jets& jets);
public:
/// Number of equidistant radius bins.
size_t numBins() const {
return _binedges.size() - 1;
}
/// Number of jets which passed cuts.
size_t numJets() const {
return _diffjetshapes.size();
}
/// \f$ r_\text{min} \f$ value.
double rMin() const {
return _binedges.front();
}
/// \f$ r_\text{max} \f$ value.
double rMax() const {
return _binedges.back();
}
/// \f$ p_\perp^\text{min} \f$ value.
double ptMin() const {
return _ptcuts.first;
}
/// \f$ p_\perp^\text{max} \f$ value.
double ptMax() const {
return _ptcuts.second;
}
/// Central \f$ r \f$ value for bin @a rbin.
double rBinMin(size_t rbin) const {
assert(inRange(rbin, 0, numBins()));
return _binedges[rbin];
}
/// Central \f$ r \f$ value for bin @a rbin.
double rBinMax(size_t rbin) const {
assert(inRange(rbin, 0, numBins()));
return _binedges[rbin+1];
}
/// Central \f$ r \f$ value for bin @a rbin.
double rBinMid(size_t rbin) const {
assert(inRange(rbin, 0, numBins()));
//cout << _binedges << endl;
return (_binedges[rbin] + _binedges[rbin+1])/2.0;
}
/// Return value of differential jet shape profile histo bin.
double diffJetShape(size_t ijet, size_t rbin) const {
assert(inRange(ijet, 0, numJets()));
assert(inRange(rbin, 0, numBins()));
return _diffjetshapes[ijet][rbin];
}
/// Return value of integrated jet shape profile histo bin.
double intJetShape(size_t ijet, size_t rbin) const {
assert(inRange(ijet, 0, numJets()));
assert(inRange(rbin, 0, numBins()));
double rtn = 0;
for (size_t i = 0; i <= rbin; ++i) {
rtn += _diffjetshapes[ijet][i];
}
return rtn;
}
/// @todo Provide int and diff jet shapes with some sort of area normalisation?
// /// Return value of \f$ \Psi \f$ (integrated jet shape) at given radius for a \f$ p_T \f$ bin.
// /// @todo Remove this external indexing thing
// double psi(size_t pTbin) const {
// return _PsiSlot[pTbin];
// }
protected:
/// Apply the projection to the event.
void project(const Event& e);
/// Compare projections.
int compare(const Projection& p) const;
private:
/// @name Jet shape parameters
//@{
/// Vector of radius bin edges
vector<double> _binedges;
/// Lower and upper cuts on contributing jet \f$ p_\perp \f$.
pair<double, double> _ptcuts;
/// Lower and upper cuts on contributing jet (pseudo)rapidity.
pair<double, double> _rapcuts;
/// Rapidity scheme
RapScheme _rapscheme;
//@}
/// @name The projected jet shapes
//@{
/// Jet shape histo -- first index is jet number, second is r bin
vector< vector<double> > _diffjetshapes;
//@}
};
}
#endif
|